Введение в логику и научный метод
Шрифт:
С помощью данного словаря все принципы, истинные относительно классов, могут быть сформулированы в иных символах и будут также истинны относительно суждений.
Несмотря на то что данный подход позволяет проявить формальные аналогии между двумя исчислениями, он, тем не менее, имеет несколько недостатков. Во-первых, как уже упоминалось, существует несколько теорем, которые являются истинными в случае, если термины обозначают суждения, и ложными, если они обозначают классы. Рассмотрим следующую теорему: если р имплицирует q или r, то р имплицирует q или р имплицирует r. Символически она записывается как [ p ( q r )] [( p q ) ( p r )] и является истинной для суждений.
Более серьезное возражение проистекает из того факта, что при разработке исчисления суждений мы хотим перечислить все используемые принципы вывода. Если мы будем развивать теорию суждений систематическим и дедуктивным образом, начиная с ряда недоказанных принципов для суждений, мы сможем доказать любой другой принцип. Если мы будем при этом достаточно осмотрительны, то сможем уберечь себя от опасности использования какого-либо принципа вывода, который мы не доказали бы ранее или не ввели в качестве допущения. Следовательно, действуя таким образом, мы можем достигнуть удовлетворительной систематизации логических принципов. Однако если мы используем исчисление классов в качестве основы для разработки теории суждений, то мы не сможем использовать данный метод получения всех принципов вывода.
Как и в исчислении классов, где все последние рассматривались относительно своих объемов, в исчислении суждений все суждения анализируются только относительно своих истинностных значений, а не относительно конкретного значения, которое в них утверждается. Читателю следует это четко уяснить, с тем чтобы не совершать грубых ошибок.
Проиллюстрируем сказанное на примере анализа определения термина «импликация», которое часто приводится в дискуссиях по символической логике, ( p q ) определяется как то, что эквивалентно ( p ' q ) или ( p . q ')'. Словами: « p имплицирует q » истинно, если «
или q » истинно.
Но «
или q» истинно в любом из перечисленных случаев: 1) р истинно и q истинно; 2) р ложно и q ложно; 3) р ложно и q ложно. Единственное, что может сделать данное суждение ложным, это ситуация, в которой р является истинным, a q ложным. Из этого следует, что «р имплицирует q» истинно в любом из первых трех перечисленных случаев. Однако если мы рассмотрим данные случаи подробнее, то должны будем признать, что до тех пор пока р ложно, «р имплицирует q» будет истинным безотносительно того, истинно или ложно q; и до тех пор, пока q истинно, «р имплицирует q» будет истинным безотносительно того, истинно или ложно р. Все это можно сформулировать несколько парадоксальным образом, сказав, что ложное суждение имплицирует любое суждение и что любое суждение имплицирует истинное суждение. Следовательно, каждое из следующих суждений должно быть истинным: «„2 + 2 = 5" имплицирует „Сакко и Ванцетти были казнены за убийство"» и «„Альфред Смит проиграл президентские выборы в 1928 году" имплицирует „углы у основания равнобедренного треугольника равны"».
Однако парадокс исчезнет, если читатель отбросит предубеждение, связанное с обыденным пониманием слова «импликация», и обратит внимание на то, что, согласно своему определению, в исчислении суждений оно обозначает нечто иное. Это различие проявляется в обозначении первого вида импликации термином «формальная», а второго – «материальная» [43] . (Иногда первая называется «следованием», «тавтологической импликацией» или «строгой импликацией».) Утверждение формальной импликации, как мы видели в первой главе, не подразумевает допущения фактической истинности или ложности двух суждений, а обозначает лишь то, что они связаны благодаря собственной структуре (которую они разделяют со всеми другими суждениями такой же формы) и что невозможно, чтобы имплицирующее суждение было истинным, а имплицируемое – ложным. Имя «материальная импликация» мы придаем тому факту, когда первое из двух суждений ложно или когда второе истинно. При этом указанные два вида импликации не являются несвязанными
Глава VII. Природа логической, или математической, системы
§ 1. Функция аксиом
Несмотря на то что вавилоняне и египтяне располагали большим количеством информации о затмениях Солнца и Луны, способах измерения земли и построения зданий, расположениях геометрических фигур в порядке симметрии и исчислении с целыми числами и дробями, в общем, считается, что у них не было науки обо всем этом. Идеей науки мы обязаны грекам.
Информация, состоящая из набора изолированных суждений, какими бы достоверными и исчерпывающими они ни были, не является наукой. Телефонный справочник, словарь, поваренная книга или строго упорядоченный каталог товара, проданного в универмаге, могут содержать точное знание, организованное в удобном порядке, однако мы при этом не считаем такие произведения научными трудами. Наука требует того, чтобы наши суждения формировали логическую систему, т. е. чтобы они состояли друг с другом в одном из рассмотренных выше отношений эквивалентности или контра-позитивности. Именно поэтому в данной главе мы продолжаем наше исследование природы доказательства, с тем чтобы прояснить некоторые родовые свойства дедуктивных систем. Мы увидим, что подобное исследование тождественно исследованию природы математики.
Вспомним, что ни одно суждение не может быть доказано экспериментальным методом. Читатель, без сомнения, знаком с теоремой Пифагора, согласно которой в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Без сомнения, ему доводилось доказывать ее в школе. Тем не менее, весьма вероятно, что в любой группе людей с высшим образованием найдется такой, который для доказательства данной теоремы станет использовать транспортир и линейку, с тем чтобы точно начертить нужные прямоугольные треугольники. Можно сказать, что в интересующем нас отношении данный индивид не сделал существенного прогресса по сравнению с методами древнеегипетских исследователей.
Допустим, к примеру, что нам пришлось бы доказывать теорему Пифагора, непосредственно прочерчивая квадраты на трех сторонах прямоугольного треугольника, изображенного на фольге равномерной плотности, затем вырезая их и взвешивая, с тем чтобы убедиться в том, что квадрат гипотенузы весит столько же, сколько и квадраты катетов. Означало бы подобное действие доказательство? Разумеется, нет, ибо мы никогда не можем быть до конца уверенными в том, что фольга имеет одинаковую плотность по всей своей площади, или в том, что вырезанные куски представляют идеальные квадраты. Отсюда следует, что если в ряде экспериментов нам не удастся отыскать идеальное совпадение в весе кусков фольги, то проделанные операции нельзя будет считать свидетельством против позиции, согласно которой идеальное равновесие все же было бы достигнуто, если бы проведенные нами линии были бы идеально прямыми, углы квадрата были бы идеально прямыми, а масса фольги абсолютно равномерной. Логическое доказательство, или демонстрация, как мы уже убедились, заключается в указании на определенное суждение как необходимое следствие других определенных суждений. В доказательстве ничего не утверждается о фактической истинности какой-либо из посылок или их логического следствия.
«Но минутку! – может воскликнуть читатель. – Разве мы не доказываем то, что теоремы в геометрии на самом деле истинны? Разве математика не является самой точной наукой, в которой указывается, что определенное свойство раз и навсегда присуще объектам определенного типа? Если вы рассмотрите любое утверждение в теореме, например в теореме Пифагора, то вы найдете в ней утверждение относительно всех треугольников. Если же вы допускаете, что доказано, что нечто действительно истинно для всех треугольников, то почему вы не соглашаетесь с тем, что мы одновременно устанавливаем «материальную» истинность такой теоремы? Разве слово «все» на самом деле не означает все треугольники?»