Введение в логику и научный метод
Шрифт:
Именно эти специальные допущения, будучи сформулированными, превращаются в гипотезы или теории. Теперь же мы переходим к подробному рассмотрению тех условий, которые эти гипотезы должны выполнять.
§ 4. Формальные условия для гипотез
1. Во-первых, гипотеза должна формулироваться таким образом, чтобы из нее можно было выводить следствия, а также чтобы всегда можно было определить, объясняет она или нет рассматриваемые факты. Данное условие может быть рассмотрено с двух точек зрения.
a. Зачастую происходит так, что гипотеза не может быть верифицирована непосредственным образом. Большинство наиболее ценных научных гипотез имеет именно такую природу. Мы не можем установить ни при каком непосредственном наблюдении того, что отношение притяжения между
b. Гипотезу нельзя подвергнуть экспериментальной проверке до тех пор, пока каждый из составных элементов гипотезы не будет обозначать определенную экспериментальную процедуру. Гипотеза о том, что Вселенная сжимается так, что все длины уменьшаются в одинаковой пропорции, является эмпирически бессмысленной, если не обладает какими-либо верифицируемыми следствиями. Сходным образом гипотеза
0 том, что вера в Провидение в большей степени способствует праведной жизни, чем забота о ближнем, не может обладать верифицируемыми следствиями до тех пор, пока мы не сможем соотнести меры, присутствующие в экспериментальном процессе, с силами, весомость которых описывается в данной гипотезе.
2. Второе, вполне очевидное условие, которое должна выполнять гипотеза, заключается в том, что она должна предлагать ответ на проблему, изначально ее породившую. Так, теория о том, что свободно падающие тела падают с постоянным ускорением, объясняет известное поведение тел, находящихся в непосредственной близости от поверхности Земли.
Тем не менее, было бы серьезной ошибкой предполагать, что ложные гипотезы, чьи логические следствия не полностью соответствуют наблюдаемым фактам, всегда являются бесполезными. Ложная гипотеза может привлечь наше внимание к ранее не подозревавшимся фактам или отношениям между фактами и тем самым усилить основания в поддержку других теорий. История науки наполнена примерами гипотез, которые были отброшены, но при этом оказались полезными. Теория флогистона в химии, теория теплоты или особой материи тепла, корпускулярная теория света, смоляная теория электричества, теория общественного договора, ассоциативная теория в психологии – все это примеры таких полезных гипотез. Более очевидную иллюстрацию представляет следующий пример. Древние вавилоняне имели множество ложных идей относительно волшебных свойств числа семь. Однако в силу своего убеждения о том, что количество видимых небесных тел, вращающихся вокруг неподвижных звезд, должно было равняться семи, они стали пристально всматриваться в небо и обнаружили редко доступную невооруженному глазу планету Меркурий. «Правильно использованные ложные гипотезы породили больше полезных следствий, чем просто ненаправленное наблюдение», – замечал английский логик де Морган [58] .
3. Существует еще одно очень важное условие, которое должно соблюдаться гипотезами. Как мы видели, теория ускорения Галилея позволила ему не только объяснять то, что он уже знал, когда формулировал эту теорию, но и предсказать, что в будущем при наблюдении откроется истинность определенных суждений, которая во время формулировки предсказания не была известна и даже не подозревалась. Так, например, Галилею удалось показать, что если ускорение свободно падающего тела было постоянным, то траектория полета ядра относительно линии горизонта должна была бы представлять собой параболу. Успешные предсказания делают гипотезу верифицированной, но при этом никак не доказанной.
Обратимся к другой иллюстрации и проявим суть нашего аргумента еще четче. Представим большую сумку, которая содержит огромное число бумажных листов. На каждом из этих листов написана некоторая цифра. Допустим, что мы вытаскиваем из сумки по одному листку, не заменяя при этом его новым листком, и фиксируем изображенную на нем цифру. Так, представим, что первой извлеченной цифрой будет «3», второй – «9». После этого нам предлагают целое состояние, если мы сможем предсказать, какими будут пять следующих друг за другом цифр, начиная с сотого извлечения.
Что могли бы мы ответить на подобное предложение? Мы могли бы сказать, что, пожалуй, ни один ответ не является лучше любого другого, поскольку мы полагаем, что цифры появляются в совершенно случайном порядке. Однако, с другой стороны, мы все же можем сформулировать гипотезу о том, что цифра, полученная при одном извлечении, не является несвязанной с цифрой, полученной при каком-то другом извлечении. Мы можем обратить внимание на порядок, в котором появляются цифры. На основании общей гипотезы о том, что такой порядок имеет место, мы можем предложить частную гипотезу, объясняющую последовательность появления цифр. Не вызывает сомнения то, что даже в случае реального отсутствия какой-либо определенной последовательности в появлении цифр мы, тем не менее, можем попробовать сформулировать закон этого появления. Делаемое нами на определенном этапе предположение о появлении цифр в некотором порядке не означает того, что на каком-то другом более позднем этапе, имея лучшие основания, мы не сможем отрицать существование такого порядка.
Примем общую гипотезу о порядке. Если так, то основной проблемой становится отыскание частного порядка. Так, каждый отдельный закон или формула, которые мы будем вводить, будут во многом зависеть от имеющегося у нас ранее знания и степени нашей осведомленности с математическими последовательностями. На основании данной осведомленности может быть усмотрена связь между появляющейся цифрой и порядковым номером извлечения. Разумеется, можно сформулировать и другие виды связи; можно предположить, что существует связь между извлекаемыми цифрами и временем их извлечения. Любой, кто знаком с алгеброй, сможет предложить несколько формул, выражающих подобный тип связи. Так, в качестве закона последовательности появления цифр мы можем предложить формулу y 1 = 3 n , где n – порядковый номер извлечения, а y 1 – извлекаемая цифра. Когда n = 1, y 1 = 3; а когда n = 2, y 1 = 9. Данная гипотеза полностью учитывает все известные факты.
Однако мы знаем и другие гипотезы, которые также могут полностью учитывать все известные факты. Такими гипотезами могут быть формулы: y 2 = 6 n – 3; y 3 = /( n 2 + n ); y 4 = 2 n 2 + 1; и y 5 = n 3/3 + 11 n /3 – 1. Несложно показать, что может быть обнаружено бесконечное число различных выражений, выполняющих эту же функцию. Все остальные гипотезы мы можем отбросить без рассмотрения, только если считаем, что обладаем определенным релевантным знанием, на основании которого рассматриваем только эти пять.
Однако являются ли данные пять формул в равной степени «удовлетворительными»? Если бы обнаружение порядка между уже извлеченными цифрами было бы условием, накладываемым на гипотезу, то, действительно, нельзя было бы отыскать причину, по которой одна из этих формул была бы более предпочтительной, чем другая. Но мы стремимся к тому, чтобы наши законы или формулы были на самом деле универсальными, т. е. выражающими неизменные отношения, существующие между цифрами. Поэтому предпочтительной гипотезой будет та, которая позволит предсказывать то, что еще не произошло, и из которой мы сможем вывести то, что уже случилось ранее, даже если бы об этом ничего не знали на момент формулировки гипотезы. Таким образом, мы можем высчитать, что если одна из этих пяти формул является универсально применимой, то при третьем извлечении мы получим: «27» – если истинна первая, «15» – если истинна вторая, «18» – если третья, «19» – если четвертая и «19» – если истинна пятая.