Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
Шрифт:
Вы можете видеть, что процесс
Теперь, когда мы знаем все о создании потоков, давайте рассмотрим, как и где мы можем этим воспользоваться.
Существует два класса задач, где можно было бы эффективно применять многопоточность.
Применение потоков хорошо там, где можно выполнять операции параллельно — например, в ряде математических задач (графика, цифровая обработка сигналов, и т.д.). Потоки также прекрасны там, где программа должна выполнять несколько независимых функций, при этом использующих общие данные — например, веб-сервер, который обслуживает несколько клиентов одновременно. Эти два класса задач мы здесь и рассмотрим.
Предположим, что мы имеем графическую программу, выполняющую алгоритм трассировки луча. Каждая строка растра на экране зависит от содержимого основной базы данных (которая описывает генерируемую картинку). Ключевым моментом здесь является то, что каждая строка растра не зависит от остальных. Это обстоятельство (независимость строк растра) автоматически приводит к программированию данной задачи как многопоточной.
Ниже приведен однопоточный вариант:
Здесь мы видим, что программа итеративно по всем значениям рассчитает необходимые растровые строки.
В многопроцессорных системах эта программа будет использовать только один из процессоров. Почему? Потому что мы не указали операционной системе выполнять что-либо параллельно. Операционная система не настолько умна, чтобы посмотреть на программу и сказать: «Эй, секундочку! У нас ее 4 процессора, и похоже, что у нас тут несколько независимых потоков управления. Запущу-ка я это на всех 4 процессорах сразу!»
Так что это дело разработчика (ваше дело!) — сообщить QNX/Neutrino, какие разделы программы следует выполнять параллельно. Проще всего это можно было бы сделать так:
С таким упрощением связано множество проблем. Первая из них (и самая незначительная) состоит в том, что функцию do_one_line придется модифицировать так, чтобы она могла в качестве своего аргумента принимать значение типа
Вторая проблема несколько сложнее. Скажем, что разрешающая способность дисплея, для которой вы рассчитывали картинку, была равна 1280×1024. Нам пришлось бы создать 1280 потоков! В общем-то, для QNX/Neutrino это не проблема — QNX/Neutrino позволяет создавать до 32767 потоков в одном процессе! Однако, каждый поток должен иметь свой уникальный стек. Если ваш стек имеет разумный размер (скажем 8 Кб), эта программа израсходует под стек 1280×8 Кб (10 мегабайт!) ОЗУ. И ради чего? В вашей системе есть только 4 процессора. Это означает, что только 4 из этих 1280 потоков будут работать одновременно, а другие 1276 потоков будут ожидать доступа к процессору. (В действительности, в данном случае пространство под стек будет выделяться только по мере необходимости. Но тем не менее, это все равно расходование ресурсов впустую — есть ведь еще и другие издержки.)
Более красивым способом решения этой задачи было бы разбить ее на 4 части (по одной подзадаче на каждый процессор), и обрабатывать каждую часть как отдельный поток:
Здесь мы запускаем только num_cpus потоков. Каждый поток будет выполняться на отдельном процессоре. А поскольку мы имеем дело с небольшим числом потоков, мы тем самым не засоряем память ненужными стеками. Обратите внимание, что мы получили число процессоров путем разыменования глобальной переменной — указателя на системную страницу _syspage_ptr. (Дополнительную информацию относительно системной страницы можно найти в книге «Building Embedded Systems» (поставляется в комплекте документации по QNX/ Neutrino — прим. ред.) или в заголовочном файле