Чтение онлайн

на главную - закладки

Жанры

Загадки и диковинки в мире чисел
Шрифт:

Таким образом, пользуясь спичками, вы прослеживаете ход чужих мыслей, восстановляя всю цепь умозаключений.

Тот же результат мы можем получить иначе, сообразив, что лежащая спичка в данном случае должна соответствовать в двоичной системе нулю (деление на 2 без остатка), а стоящая – единице. Таким образом, в предшествовавшем примере мы имеем (читая справа налево) число

или в десятичной системе так:

128 + 8 + 1 = 137.

А в последнем примере задуманное число изображается по двоичной системе:

или по десятичной:

512 + 128 + 16 + 8 + 1 = 664.

Еще пример. Какое число было задумано, если из спичек получилась фигура:

Решение: 10010101

в двоичной системе, а в десятичной:

128 + 16 + 4+ 1 = 139.

Необходимо заметить, что получаемая при последнем делении единица также должна быть отмечаема стоящей спичкой.

Идеальный разновес

У некоторых читателей, вероятно, возник уже вопрос: почему для выполнения описанных раньше опытов мы пользуемся именно двоичной системой? Ведь всякое число можно изобразить в любой системе, между прочим, и в десятичной. Чем же объясняется предпочтение двоичной?

Объясняется оно тем, что в этой системе, кроме нуля, употребляется всего одна цифра – единица, а следовательно, число составляется из различных степеней 2, взятых только по одному разу. Если бы в фокусе с конвертами мы распределили деньги, например, по 5-ричной системе, то могли бы составить, не вскрывая конвертов, любую сумму лишь в том случае, когда каждый пакет повторяется у нас не менее 4 раз (в 5-ричной системе, кроме нуля, употребляются ведь 4 цифры).

Впрочем, бывают случаи, когда для подобных надобностей удобнее пользоваться не двоичной, а троичной системой, несколько видоизмененной. Сюда относится знаменитая старинная «задача о системе гирь», которая может послужить сюжетом и для арифметического фокуса.

Представьте, что вам предложили придумать систему из 4 гирь, с помощью которых возможно было бы отвесить любое целое число фунтов от 1 до 40. Двоичная система подсказывает вам набор:

1 ф., 2 ф., 4 ф., 8 ф., 16 ф.,

которым можно отвешивать все грузы от 1 до 31 фунта. Но это, очевидно, не удовлетворяет требуемым условиям ни по числу гирь, ни по предельному грузу (31 ф. вместо 40 ф.). С другой стороны, однако, вы не использовали здесь предоставляемой весами возможности – класть гири не только на одну чашку весов, но и на две, т. е. пользоваться не только суммою гирь, но и их разностью. Это дает так много разнообразных комбинаций, что вы совершенно теряетесь в поисках, не умея уложить их в какую-либо систему. Если вам не посчастливится напасть на правильный путь, вы готовы будете даже сомневаться вообще в разрешимости подобной задачи таким малым числом гирь, как четыре. Но посвященный выходит из затруднения с волшебной простотой, намечая следующие 4 гири:

1ф.,3ф.,9ф.,27ф.

Любое целое число фунтов, в пределах одного пуда, вы можете отвесить такими гирями, кладя их то на одну, то на обе чашки весов. Не приводим примеров, потому что каждый легко может убедиться сам в полной пригодности такого набора гирь для нашей цели. Остановимся лучше на том, почему именно указанный ряд обладает этим свойством. Вероятно, читатели уже заметили, что числа эти – ряд степеней числа 3 [27] .

30, 31, 32, 33.

Другими словами, мы обращаемся здесь к услугам троичной системы счисления. Но как воспользоваться ею в тех случаях, когда требуемый вес получается в виде разности двух гирь? И как избегнуть необходимости обращаться к удвоению гирь (в троичной системе ведь, кроме нуля, употребляются две цифры: 1 и 2)? То и другое достигается введением «отрицательных» цифр; дело сводится попросту к тому, что вместо цифры 2 употребляют 3–1, т. е. цифру единицы высшего разряда, от которого отнимается одна единица низшего. Например, число 2 в нашей видоизмененной троичной системе обозначится не 2, а 11, где знак минус над цифрой единиц означает, что эта единица не прибавляется, а отнимается. Точно так же число 5 изобразится не 12, а

(т. е. 9–3 – 1 = 5). Первые десять чисел изобразятся в этой упрощенной троичной системе следующим образом:

Теперь ясно, что если любое число можно изобразить в троичной системе с помощью нуля (т. е. знака отсутствия числа) и одной только цифры, именно прибавляемой или отнимаемой единицы, – то из чисел 1,

3, 9, 27 можно, складывая или вычитая их, составить все числа от 1 до 40. Случай сложения отвечает при взвешивании тому случаю, когда все гири помещаются на одну чашку, а случай вычитания – когда гиря кладется на чашку с товаром и, следовательно, вес ее отнимается от веса остальных гирь. Нуль соответствует отсутствию гири.

Применяется ли эта система на практике? Как известно, нет. Всюду в мире, где введена метрическая система мер, применяется набор в 1, 2, 2, 5 единиц, а не 1, 3, 9, 27, – хотя первым можно отвешивать грузы только до 10 единиц, а вторым – до 40. Не применяется набор 1, 3, 9, 27 и там, где еще метрическая система не введена [28] . Причина отказа на практике от этого совершеннейшего разновеса кроется в том, что он удобен только на бумаге,

на деле же пользоваться им весьма хлопотливо. Если бы приходилось только отвешивать заданное число весовых единиц – например, отвесить 400 г масла или 2500 г сахара, – то системой гирь в 100, 300, 900, 2700 можно было бы еще на практике пользоваться (хотя и тут приходилось бы каждый раз долго подыскивать соответствующую комбинацию). Но когда приходится определять, сколько весит данный товар, то подобный разновес оказывается страшно неудобным: здесь нередко, ради прибавления к поставленным гирям одной единицы, придется произвести полную замену прежней комбинации другой, новой. Отвешивание становится при таких условиях крайне медленным и притом утомительным делом – в чем легко убедиться, если, написав обозначения гирь на бумажках, проделать с ними ряд примерных взвешиваний.

Фокусы, основанные на пользовании двоичной и троичной системами счисления, могут быть еще видоизменяемы [29] – но я предоставляю их изобретательности читателя и перехожу к арифметическим фокусам иного рода.

Предсказать сумму ненаписанных чисел

Нас поражает уменье некоторых людей с необыкновенной быстротой складывать столбцы многозначных чисел. Но что сказать о человеке, который может написать сумму еще раньше, чем ему названы все слагаемые? Этот фокус обыкновенно выполняется в таком виде. Отгадчик предлагает вам написать какое-нибудь многозначное число, по вашему выбору. Бросив взгляд на это первое слагаемое, отгадчик пишет на бумажке сумму всей будущей колонны слагаемых и передает вам на хранение. После этого он просит вас (или кого-нибудь из присутствующих) написать еще одно слагаемое – опять-таки какое угодно. А затем быстро пишет сам третье слагаемое. Вы складываете все три написанных числа – и получаете как раз тот результат, который заранее был написан отгадчиком на спрятанной у вас бумажке. Если, например, вы написали в первый раз 83267, то отгадчик пишет будущую сумму 183266. Затем вы пишете, допустим, 27935, а отгадчик приписывает третье слагаемое – 72064:

Получается в точности предсказанная сумма, хотя отгадчик не мог знать, каково будет второе слагаемое. Отгадчик может предсказать также сумму 5 или 7 слагаемых, – но тогда он сам пишет два или три из них. Никакой подмены бумажки с результатом здесь заподозрить вы не можете, так как она до последнего момента хранится в вашем собственном кармане. Очевидно, отгадчик пользуется здесь каким-то неизвестным вам свойством чисел.

Так оно и есть. Отгадчик пользуется тем, что от прибавления, скажем, к 5-значному числу числа из пяти девяток (99999) первое число увеличивается на 1000000 – 1, т. е. впереди него появляется единица, а последняя цифра уменьшается на единицу. Например:

Это число – т. е. сумму написанного вами числа и 99999 – отгадчик и пишет на бумажке как будущий результат сложения. А чтобы результат оправдался, он, увидев ваше второе слагаемое, выбирает свое, третье слагаемое так, чтобы вместе со вторым оно составило 99999, т. е. вычитает каждую цифру второго слагаемого из 9. Эти операции вы легко можете теперь проследить на предыдущем примере, – а также и на следующих примерах

Легко усмотреть, что вы сильно затрудните отгадчика, если ваше второе слагаемое будет заключать больше цифр, чем первое: отгадчик не сможет написать слагаемого, которое уменьшит ваше второе число для оправдания предсказанного им слишком малого результата. Поэтому опытный отгадчик предупредительно ограничивает свободу вашего выбора этим условием.

Фокус выходит внушительнее, когда в придумывании слагаемых участвует несколько лиц. После первого же слагаемого – например, 437692, отгадчик уже предсказывает сумму всех пяти чисел, а именно записывает 2437690 (здесь будет добавлено дважды 999999, т. е. 2000000 – 2). Дальнейшее ясно из схемы:

Предугадать результат ряда действий

Большое впечатление производят те арифметические фокусы, в которых отгадчик угадывает результат действий над совершенно неизвестными ему числами. Подобных фокусов существует много, и все они основаны на возможности придумать такой ряд арифметических действий, результат которых не зависит от чисел, над которыми они производятся.

Вот один из фокусов этого рода.

Признак делимости на 9 всем известен: число кратно 9, если сумма его цифр кратна 9. Припомнив, как выводится это правило, мы запасаемся еще и другим интересным положением: если от числа отнять сумму его цифр, то получается остаток, кратный 9 (положение это доказывается попутно при выводе признака делимости на 9). Точно так же мы получим число, кратное 9, если отнимем от данного числа другое, которое составлено из тех же цифр, но размещенных в другом порядке. Например: 457 – (4 + 5 + 7) = 441, т. е. числу, кратному 9; или: 7843–4738 = 3105, числу, кратному 9 [30] .

Поделиться:
Популярные книги

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Низший

Михайлов Дем Алексеевич
1. Низший!
Фантастика:
боевая фантастика
7.90
рейтинг книги
Низший

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Возвращение Безумного Бога 5

Тесленок Кирилл Геннадьевич
5. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога 5

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Теневой Перевал

Осадчук Алексей Витальевич
8. Последняя жизнь
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Теневой Перевал

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

По дороге пряностей

Распопов Дмитрий Викторович
2. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
5.50
рейтинг книги
По дороге пряностей