Чтение онлайн

на главную - закладки

Жанры

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Рэндалл Лиза

Шрифт:

Следующие несколько глав поясняют эту и другие примечательные возможности искривленного пространства-времени и то, как эти следствия иногда не соответствуют нашим ожиданиям. В этой главе внимание сосредоточено на закрученном пятимерном мире, который может помочь объяснить огромный диапазон масс в физике частиц. В то время как в четырехмерной квантовой теории поля частицы обычно имеют примерно одинаковые массы, в закрученной многомерной геометрии это уже не так. Закрученные геометрии определяют структуру, в которой очень естественно возникают несоизмеримые массы, а квантовые эффекты находятся под контролем.

В конкретной геометрии, описанной в этой главе, мы увидим, что пространство так сильно скручено в присутствии двух плоских граничных бран, что проблема иерархии в физике

частиц автоматически решается, не требуя присутствия большого измерения или какого-то другого большого числа. В этом сценарии одна брана испытывает действие большой силы гравитации, а другая не испытывает этого действия вообще. Вдоль пятого измерения пространство-время изменяется так быстро, что оно превращает скромное число, связанное с расстоянием между двумя бранами, в огромное число (порядка десяти миллионов миллиардов), связанное с относительной интенсивностью гравитационного взаимодействия.

Сначала мы объясним слабость гравитации на второй бране в терминах функции вероятности гравитона, определяющей взаимодействия гравитона на любом заданном расстоянии в пятом измерении. Но мы объясним также слабость гравитации иными терминами, основанными на закрученной геометрии, а не на интенсивности гравитационного взаимодействия. Мы увидим, что одним из поразительных следствий закрученной геометрии является то, что размер, масса и даже время зависят от положения вдоль пятого измерения. Закручивание пространства и времени в этой установке из двух бран похоже на закручивание времени вблизи горизонта черной дыры. Но в этом случае время замедляется, геометрия расширяется и на одной из бран частицы приобретают малые массы, так что проблема иерархии автоматически решается.

После обсуждения закрученной геометрии и ее приложений к проблеме иерархии, мы завершаем эту главу обсуждением характерных для будущих экспериментов следствий теории. Одним из самых волнующих вопросов этой теории, как и вопросов о моделях с большими дополнительными измерениями, обсуждавшихся в предыдущей главе, является то, что если она верна, она очень скоро будет иметь экспериментальные следствия на ускорителях частиц. На самом деле мы увидим, что эти следствия будут даже более существенными, чем обсуждавшаяся нами характерная недостающая энергия. КК-партнеры гравитона, хоть и являясь гостями из многомерного пространства, будут различимыми, видимыми частицами, распадающимися на знакомые частицы на нашей четырехмерной бране.

Закрученная геометрия и ее удивительные приложения

Геометрия, которую мы рассматриваем в этой главе, содержит две браны, ограничивающие пятое измерение пространства, как показано на рис. 78. Эта система похожа на рассмотренную в гл. 17 тем, что имеются две браны и пятое измерение, простирающееся между ними. Однако на самом деле это совершенно другая теория. Частицы и распределение энергии различны, и теория не супер-симметрична. Тем не менее, как и в том случае, мы предполагаем, что все частицы Стандартной модели вместе с хиггсовской частицей, ответственной за нарушение электрослабой симметрии, закреплены на одной из бран.

Как и ранее, в этой схеме мы предполагаем, что гравитация — единственное взаимодействие, существующее внутри пятого измерения. Это означает, что, если не считать гравитацию, то каждая из бран выглядела бы как общепринятая четырехмерная вселенная. Калибровочные бозоны и частицы, расположенные на бранах, будут передавать взаимодействия и взаимодействовать друг с другом так, как будто не существует никакого пятого измерения. Частицы Стандартной модели будут перемещаться только по трем плоским пространственным измерениям на бранах, а взаимодействия будут распространяться только вдоль плоской трехмерной поверхности браны.

Однако гравитация отличается от других взаимодействий, так как она не прикреплена к бране, а напротив, существует в полном пятимерном балке. Гравитационное взаимодействие будет ощущаться везде в пятом измерении. Но это не означает, что оно ощущается везде одинаково. Энергия на бранах и в пятимерном балке искривляет пространство-время, что приводит к колоссальной разнице в значении гравитационного поля.

Теории с большими дополнительными измерениями из предыдущей главы использовали тот факт, что браны могут удерживать частицы и взаимодействия, но пренебрегали энергией, которую могут нести сами браны. Мы с Раманом не были уверены, что это предположение всегда хорошее, так как главной составной частью общей теории относительности Эйнштейна является то, что энергия индуцирует гравитационное поле, и это означает, что когда браны переносят энергию, они должны искривлять пространство и время. Во вселенной с единственным дополнительным измерением, которую мы собирались изучать, было совершенно не ясно, можно ли пренебречь энергией браны и балка: гравитационные эффекты браны не рассеиваются очень быстро, так что даже очень далеко от бран можно ожидать искажений пространства-времени.

Мы хотели узнать, каким образом пространство-время будет искривляться при наличии двух несущих энергию бран, которые ограничивают дополнительное измерение пространства. Раман и я решили эйнштейновские уравнения гравитации для такой схемы с двумя бранами, предполагая, что в балке и на бранах содержалась энергия. Мы обнаружили, что такая энергия была действительно очень важной — результирующее пространство-время было резко искривлено.

В ряде случаев искривленные пространства легко изобразить на картинке. Например, поверхность сферы двумерна — для того чтобы знать свое положение, вам требуются только широта и долгота, — но тем не менее она явно искривлена. Однако многие искривленные пространства труднее нарисовать, так как они не могут быть легко представлены в трехмерном пространстве. Конкретное закрученное пространство-время, которое мы сейчас будем рассматривать, является примером такого пространства. Это часть пространства-времени, известная как пространство анти-де Ситтера. Кривизна этого пространства отрицательна, так что оно напоминает скорее не сферу, а чипсы «Прингле». Это пространство получило свое название по имени датского математика и космолога Виллема де Ситтера, изучавшего пространство с положительной кривизной, которое сейчас называется пространством де Ситтера. Хотя нам эти названия здесь не понадобятся, мы сошлемся на них позднее, когда свяжем эту теорию с теорией пространства анти-де Ситтера, которое изучают теоретики-струнники.

Ниже мы рассмотрим интересный подход, в котором пятимерное пространство-время искривлено. Но для начала сосредоточимся на двух бранах на краях пятого измерения. Эти две граничные браны совершенно плоские. Находясь на бране на любой из границ, вы будете прикреплены к (три + один) — мерному миру (три пространственных измерения и одно временное) [154] , который будет простираться бесконечно далеко по трем пространственным измерениям и выглядеть как плоское пространство-время, без особых гравитационных эффектов.

154

Я иногда буду использовать запись «три + один» вместо «четыре», чтобы подчеркнуть различие между пространством и временем.

Кроме того, искривленное пространство-время обладает тем специальным свойством, что если вы ограничитесь любым отдельным срезом вдоль пятого измерения, но не самими бранами на краях, вы обнаружите, что этот срез совершенно плоский. То есть, хотя нигде в пятом измерении за исключением концов нет бран, геометрия (три + один) — мерных поверхностей, которые вы получаете, находясь в какой-либо пятимерной точке, выглядит плоской, т. е. имеет ту же форму, что и большие плоские браны на границах. Если вы рассматриваете граничные браны как горбушки у буханки хлеба, то плоские параллельные четырехмерные области в любой точке вдоль пятого измерения пространства-времени похожи на плоские, нарезанные куски хлеба из внутренней части буханки.

Поделиться:
Популярные книги

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Приручитель женщин-монстров. Том 1

Дорничев Дмитрий
1. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 1

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Все еще не Герой!. Том 2

Довыдовский Кирилл Сергеевич
2. Путешествие Героя
Фантастика:
боевая фантастика
юмористическое фэнтези
городское фэнтези
рпг
5.00
рейтинг книги
Все еще не Герой!. Том 2

Газлайтер. Том 5

Володин Григорий
5. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 5

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Аномалия

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Аномалия

(Противо)показаны друг другу

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
5.25
рейтинг книги
(Противо)показаны друг другу

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й