Чтение онлайн

на главную

Жанры

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Рэндалл Лиза

Шрифт:

Но тем не менее рассматриваемое нами пятимерное пространство искривлено. Это отражается в том способе, которым четырехмерные плоские срезы пространства-времени склеены вместе вдоль пятого измерения. Впервые я говорила об этой геометрии в институте теоретической физики Кавли в Санта-Барбаре, где теоретик-струнник Том Бэнкс объяснил мне, что с технической точки зрения пятимерная геометрия, которую нашли Раман и я, называется закрученной. Хотя многие искривленные геометрии пространства-времени в разговорной речи называются закрученными, технический термин относится к геометриям, в которых каждый срез плоский [155] , но они собираются вместе с учетом общего закручивающего конформного фактора. Этот фактор есть функция, меняющая общий масштаб для положения, времени, массы и энергии в каждой точке в пятом измерении. Такое замечательное свойство закрученной геометрии достаточно тонкое, и я объясню

его позднее в следующем разделе. Конформный фактор сказывается также на функции вероятности гравитона и взаимодействиях, которые мы вскоре изучим.

155

На самом деле все срезы обладают одной геометрией; в данном случае срезы плоские.

Искривленное пространство с плоскими слоями изображено на рис. 79. Это заполненная воронка. Мы могли бы с помощью большого ножа нарезать воронку на плоские листки, но поверхность воронки явно искривлена. В некоторых отношениях это похоже на искривленное пространство-время, которое мы рассматриваем. Но аналогия не идеальна, так как граница воронки, ее поверхность есть единственное место, где она искривлена, в то время как в закрученном пространстве-времени кривизна есть везде. Эта кривизна отражалась бы в общем изменении масштаба измерительной линейки в пространстве и скорости хода часов для времени, которые будут разными в каждой точке пятого измерения.

Более простой способ проиллюстрировать кривизну закрученного пространства-времени — обратиться к форме функции вероятности гравитона. Гравитон — это частица, переносящая гравитационное взаимодействие, и его функция вероятности говорит нам о вероятности обнаружения гравитона в любой фиксированной точке пространства. Интенсивность гравитации отражается в этой функции: чем больше ее значение, тем сильнее взаимодействия гравитона в этой конкретной точке и тем сильнее сила тяготения.

Для плоского пространства-времени гравитон будет с равной вероятностью обнаруживаться везде. Функция вероятности для гравитона в плоском пространстве-времени была бы поэтому постоянной. Но для искривленного пространства-времени, как и для закрученной геометрии, которую мы рассматриваем, это уже будет не так. Кривизна говорит нам о форме гравитации. Когда пространство-время искривлено, значение функции вероятности гравитона различно в разных местах пространства-времени.

Так как каждый срез пространства-времени в нашей закрученной геометрии совершенно плоский, функция вероятности гравитона не изменяется вдоль трех стандартных пространственных измерений, а меняется только вдоль пятого измерения [156] . Иными словами, даже несмотря на то, что функция вероятности гравитона имеет разные значения в разных местах вдоль пятого измерения, до тех пор пока две точки равноудалены вдоль пятого измерения, значение этой функции будет одним и тем же. Это говорит нам, что функция вероятности гравитона зависит только от положения в пятом измерении. Тем не менее она полностью характеризует кривизну закрученного пространства-времени. И так как эта функция изменяется только вдоль одной координаты, т. е. вдоль пятого измерения, ее просто изобразить на рисунке.

156

Напомним, что пятое измерение — это пятое измерение пространства-времени и гипотетическое четвертое измерение пространства.

Функция вероятности гравитона вдоль пятого измерения изображена на рис. 80. Она экспоненциально быстро (т. е. необычайно быстро) убывает, как только мы покидаем первую брану, которую мы назовем Гравитационной браной, и направляется в сторону второй браны, которую мы назовем Слабой браной. Гравитационная брана и Слабая брана различны, так как первая несет положительную энергию, а вторая несет отрицательную энергию. Такое распределение энергии приводит к тому, что функция распределения гравитона намного больше в окрестности Гравитационной браны.

Эффект падения функции вероятности состоит в том, что гравитон, физическая частица, обмен которой генерирует гравитационное притяжение, имеет очень мало шансов быть найденным вблизи Слабой браны. Поэтому взаимодействия гравитона на Слабой бране сильно подавлены.

Интенсивность гравитации так сильно зависит от положения в пятом измерении, что интенсивности гравитационного взаимодействия на двух бранах, ограничивающих противоположные концы такого закрученного пятимерного мира, очень сильно различаются. Гравитация сильна на первой бране, где гравитация локализована, но очень слаба на второй бране, где находится Стандартная модель. Так как функция вероятности гравитона пренебрежимо мала на второй бране, взаимодействия гравитона с захваченными здесь частицами Стандартной модели оказываются чрезвычайно слабыми.

Отсюда следует, что в таком закрученном пространстве-времени мы действительно можем ожидать иерархии между наблюдаемым массами и планковским масштабом масс. Хотя гравитон есть везде, интенсивность его взаимодействия с частицами на Гравитационной бране много больше, чем с частицами на Слабой бране. Функция вероятности гравитона на Слабой бране необычайно мала, и если этот сценарий есть правильное описание мира, такая малость ответственна за слабость гравитации в нашем мире.

В этой модели ничтожная гравитация на Слабой бране не требует большого расстояния между двумя бранами. Как только вы покидаете Гравитационную брану, где сильно сконцентрирована функция вероятности гравитона, гравитация становится экспоненциально малой, что приводит к необычайной малости гравитации на Слабой бране. Так как функция вероятности гравитона стремительно уменьшается, гравитация на Слабой бране (где мы живем) резко уменьшается. Она может быть в 1015 раз слабее, чем можно ожидать без учета закручивания, даже если две браны расположены довольно близко. Этот аспект теории, тот факт, что бранам не нужно быть разделенными слишком сильно, делает эту модель намного более реалистичной возможностью, чем модель больших дополнительных измерений. Хотя большие дополнительные измерения были привлекательной переформулировкой проблемы иерархии, в конце концов в них все еще присутствует необъясненное большое число — размер дополнительного измерения. В теории, которую мы сейчас рассматриваем, гравитационное взаимодействие на Слабой бране на много порядков величины слабее всех других взаимодействий, даже когда Слабая брана удалена от первой браны (Гравитационной браны) на очень скромное расстояние.

Расстояние между бранами в такой закрученной геометрии должно быть лишь чуть-чуть больше планковского масштаба длины. В то время как сценарий больших измерений требует введения очень большого числа, а именно размера измерений, в модели с закрученной геометрией для объяснения иерархии никакого неестественно большого числа не требуется. Это происходит потому, что экспонента автоматически превращает скромное число в очень большое число (экспоненту), или в очень малое число (обратное большой экспоненте). На Слабой бране интенсивность гравитации меньше; она уменьшается на фактор, являющийся экспонентой от расстояния между двумя бранами [157] . Если Слабая брана находится на расстоянии в 16 единиц от другой [158] , ожидается огромное отношение между планковским масштабом масс — большой массой, говорящей нам, что гравитация слаба, — и массой хиггсовской частицы, а следовательно, массами слабых калибровочных бозонов. Это означает, что для того, чтобы объяснить иерархию, достаточно расстояния между бранами, которое всего в шестнадцать раз больше ваших самых наивных оценок. Множитель 16 может показаться большим, но он все же значительно меньше числа 1016, которое мы пытаемся объяснить.

157

Единицы, в которых измеряется расстояние, определяются энергией на бране, которую можно определить с помощью планковского масштаба масс.

158

Это число выражено в единицах кривизны, которая, в свою очередь, определяется энергией на бране и в балке.

В течение многих лет физики-частичники надеялись найти экспоненциальное объяснение иерархии. Иначе говоря, мы надеялись обнаружить, что это необъяснимо большое число является следствием некоторой естественно возникающей экспоненциальной функции. Теперь Раман и я с помощью дополнительных измерений нашли способ, которым физика частиц автоматически включила экспоненциальную иерархию масс. В том месте, где находится наша брана (Слабая брана), гравитационное взаимодействие может быть много меньше, чем оно было бы там, где функция вероятности гравитона достигает максимума. Так как гравитация на нашей бране должна быть ослаблена закрученной геометрией, если Стандартная модель квартирует на Слабой бране, то проблема иерархии будет решена. Это было решение проблемы иерархии, и оно падало прямо нам в руки.

Другой способ понять это примечательное новое свойство закрученной геометрии — рассмотреть, как ослабляется гравитация. В гл. 19 мы объяснили слабость гравитации в сценарии АДД с помощью идущих от массивного тела гравитационных силовых линий, которые разбавляются, распространяясь по большим измерениям. Если мы выбираем этот путь, мы должны описать такое разбавление как следствие функции вероятности гравитона. Напомним, что функция вероятности гравитона показывает, как гравитация распространяется по пространству. Так как гравитация в сценарии больших дополнительных измерений в равной степени сильна везде в дополнительных измерениях, в этом случае функция вероятности гравитона плоская. Такая плоская функция вероятности гравитона показывает, что гравитон, частица, переносящая гравитацию, размазана по большому пространству, окруженному дополнительными измерениями. Такая плоская функция вероятности, равномерно распределенная по всему пространству дополнительных измерений, говорит, что влияние гравитации в четырех измерениях сильно ослабилось.

Поделиться:
Популярные книги

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Дядя самых честных правил 6

«Котобус» Горбов Александр
6. Дядя самых честных правил
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Дядя самых честных правил 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Законы Рода. Том 6

Flow Ascold
6. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 6

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II