Чтение онлайн

на главную

Жанры

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Рэндалл Лиза

Шрифт:

В передаче взаимодействий между физическими частицами играют роль не только прямые взаимодействия между ними, но и непрямые взаимодействия, содержащие виртуальные частицы. Точно так же, как на мнение вашего приятеля оказывают влияние мнения всех разговаривавших с ним, окончательное взаимодействие между частицами есть сумма всех возможных вкладов, включая вклады от виртуальных частиц. Поскольку важность вклада виртуальных частиц зависит от расстояний, интенсивность взаимодействий также зависит от расстояния.

Метод ренормализационной группы дает точные указания, как вычислить вклад виртуальных частиц в любое взаимодействие. Все вклады промежуточных виртуальных частиц суммируются, и это либо усиливает, либо ослабляет интенсивность взаимодействий калибровочных бозонов.

Непрямые взаимодействия

играют более важную роль, когда взаимодействующие частицы находятся дальше друг от друга. Большее расстояние аналогично тому, что вы рассказываете свой секрет большему числу «виртуальных» приятелей. Хотя вы не можете быть уверены в том, что каждый отдельный приятель выдаст ваш секрет, но чем большему количеству приятелей вы расскажете его, тем больше вероятность, что кто-то «проколется». Всякий раз, когда существует путь, по которому виртуальные частицы могут дать вклад в полную интенсивность взаимодействия, квантовая механика гарантирует, что это произойдет. При этом величина влияния виртуальных частиц на интенсивность взаимодействия зависит от расстояния, на которое распространяется сила взаимодействия.

Однако реальные вычисления по методу ренормализационной группы еще умнее, так как они также суммируют вклады бесед приятелей друг с другом. Более ясная аналогия со вкладами за счет виртуальных частиц напоминает пути документа, проходящего сквозь большое бюрократическое учреждение. Если человек, находящийся на вершине иерархии, посылает письмо, оно немедленно проходит сквозь учреждение. Но послания кого-то, находящегося на более низком уровне иерархии, будут подвергнуты проверке его начальниками. Если письмо исходит от кого-то, находящегося на еще более низком уровне, оно сначала может быть втянуто в бюрократическую машину и пройти все ее уровни, прежде чем в конце концов достигнет места назначения. В этом случае бюрократы на каждом уровне будут рассылать документ всем работникам своего уровня, прежде чем послать его последовательно на более высокий уровень. Только достигнув верхних эшелонов, документ будет выпущен из учреждения. То послание, которое возникнет в этом случае, будет, вообще говоря, не совпадать с оригиналом, а представлять собой документ, многократно профильтрованный многоэтажной бюрократической машиной.

Если представить себе виртуальные частицы как чиновников, причем чиновник верхнего уровня соответствует виртуальной частице большей энергии, то письмо с высокого уровня будет немедленно передано адресату, а документы с более низких уровней должны будут пройти много стадий. Квантово-механический вакуум — это «бюрократическое учреждение», с которым сталкивается фотон. Каждое взаимодействие изучается промежуточными виртуальными частицами со все меньшей энергией. Как и в бюрократической системе, возможны отклонения на всех уровнях (или расстояниях). Некоторые пути будут обходить бюрократические препоны, создаваемые виртуальными частицами, другие будут включать виртуальные частицы, путешествующие на все более далекие расстояния. Передача информации на все меньшие расстояния (все большие энергии) сталкивается со все меньшим количеством виртуальных процессов по сравнению с теми, которые встречаются на больших расстояниях.

Однако между виртуальными процессами и бюрократическим учреждением имеется существенное различие. В бюрократическом учреждении каждое конкретное послание проходит по своему пути, независимо от того, насколько он сложен. С другой стороны, квантовая механика утверждает, что может существовать много путей. При этом она настаивает на том, что средняя интенсивность взаимодействия равна сумме вкладов от всех возможных путей, которые только могут существовать.

Рассмотрим фотон, распространяющийся от одной заряженной частицы к другой. Так как он может по дороге превращаться в виртуальные электрон-позитронные пары (см. рис. 60), квантовая механика утверждает, что когда-то это произойдет. При этом пути с виртуальными электронами и позитронами влияют на эффективность, с которой фотон переносит электромагнитное взаимодействие.

И это не единственный квантово-механический процесс, который может возникнуть. Виртуальные электроны и позитроны могут сами испускать фотоны, которые, в свою очередь, могут превращаться в другие виртуальные частицы и т. д. Расстояние между двумя заряженными частицами, обменивающимися фотоном, определяет число таких взаимодействий, которые произойдут между фотоном-переносчиком и частицами в вакууме, и то, насколько сильным будет это взаимодействие. Интенсивность электромагнитного взаимодействия — это суммарный вклад многих путей, по которым движется фотон, если принять во внимание все возможные бюрократические окольные пути, т. е. квантово-механические процессы с участием виртуальных частиц на больших или малых расстояниях. Так как число виртуальных частиц, с которыми сталкивается фотон, зависит от проходимого им расстояния, интенсивность взаимодействия фотона зависит от расстояния между заряженными телами, с которыми он взаимодействует.

Как показывают вычисления, если сложить все вклады от всех возможных путей, то вакуум ослабляет тот сигнал, который фотон переносит от электрона.

Интуитивное объяснение ослабления электромагнитного взаимодействия состоит в том, что заряды противоположного знака притягиваются, а заряды одного знака отталкиваются, поэтому в среднем виртуальные позитроны находятся ближе к электрону, чем виртуальные электроны. Поэтому заряды от виртуальных частиц ослабляют полное воздействие исходной электрической силы, создаваемой электроном. Квантово-механические эффекты экранируют электрический заряд. Экранировка электрического заряда означает, что интенсивность взаимодействия между фотоном и электроном уменьшается с расстоянием.

Реальная электрическая сила на больших расстояниях оказывается меньше, чем классическая электрическая сила на малых расстояниях, так как фотон, переносящий взаимодействие на короткие расстояния, чаще выбирает путь, не содержащий виртуальных частиц. Фотону, путешествующему на малое расстояние, не требуется проходить сквозь большое ослабевающее облако виртуальных частиц, как это приходится делать фотону, переносящему взаимодействие на большие расстояния.

Не только фотон, но и все переносящие взаимодействие калибровочные бозоны взаимодействуют по дороге к месту назначения с виртуальными частицами. Пары виртуальных частиц — частица и ее античастица — спонтанно извергаются из вакуума и поглощаются им, что влияет на конечную интенсивность взаимодействия. Эти виртуальные частицы на время устраивают засаду на переносящий взаимодействие калибровочный бозон, изменяя суммарную интенсивность взаимодействия. Вычисления показывают, что, как и в случае электромагнитного взаимодействия, интенсивность слабого взаимодействия уменьшается с расстоянием.

Однако виртуальные частицы не всегда навешивают тормоза на взаимодействия. Как это ни удивительно, иногда они могут помочь усилить их. В начале 1970-х годов Дэвид Политцер, который был тогда аспирантом Сидни Коулмена в Гарварде (который и предложил Политцеру задачу), и независимо Дэвид Гросс и его студент Фрэнк Вильчек (оба из Принстона), и, наконец, Герард ’т Хоофт из Голландии проделали вычисления, показавшие, что сильное взаимодействие ведет себя полностью противоположным образом по сравнению с электромагнитным взаимодействием. Вместо экранирования сильного взаимодействия на больших расстояниях и тем самым его ослабления, виртуальные частицы на самом деле усиливают взаимодействия глюонов (частиц, переносящих сильное взаимодействие), так что сильное взаимодействие на больших расстояниях оправдывает свое название. Гросс, Политцер и Вильчек получили Нобелевскую премию по физике 2004 года за глубокое проникновение в суть сильного взаимодействия.

Ключ к этому явлению — поведение самих глюонов. Большое различие между глюонами и фотонами заключается в том, что глюоны взаимодействуют друг с другом. Глюон может влететь в область взаимодействия и превратиться в пару виртуальных глюонов, которые будут оказывать влияние на интенсивность взаимодействия. Эти виртуальные глюоны, как и все виртуальные частицы, существуют только краткий миг. Но их влияние накапливается с ростом расстояния, пока сильное взаимодействие не становится действительно необычайно сильным. Результат вычислений показывает, что виртуальные глюоны чрезвычайно усиливают интенсивность сильного взаимодействия, когда расстояния между частицами растут. Сильное взаимодействие намного сильнее тогда, когда частицы достаточно далеки друг от друга, а не тогда, когда они находятся рядом друг с другом.

Поделиться:
Популярные книги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Проиграем?

Юнина Наталья
Любовные романы:
современные любовные романы
6.33
рейтинг книги
Проиграем?

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Безумный Макс. Поручик Империи

Ланцов Михаил Алексеевич
1. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
7.64
рейтинг книги
Безумный Макс. Поручик Империи

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Измена. Я отомщу тебе, предатель

Вин Аманда
1. Измены
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Измена. Я отомщу тебе, предатель

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Ученик

Губарев Алексей
1. Тай Фун
Фантастика:
фэнтези
5.00
рейтинг книги
Ученик

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера