Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
Таким окольным путем до Афины дошла следующая фраза, сказанная Икаром: «Интенсивность силы зависит от места, где вы были». Эти странные слова, совсем не характерные для Икара, сначала сбили Афину с толку, но потом она поняла, что фраза по дороге исказилась, как в испорченном телефоне. После некоторых раздумий она решила, что на самом деле замечание Икара было таким: «Эффективность машины зависит от модели автомобиля» [117] .
Мы увидим, что первоначально услышанное Афиной замечание правильно. В этой главе рассказывается о том, как физические процессы, происходящие между частицами, находящимися на одном расстоянии друг от друга, могут быть связаны с процессами, происходящими между частицами, находящимися на другом расстоянии, и почему физические величины, например масса частицы
117
Здесь обыгрывается схожесть звучания некоторых английских слов. В оригинале фразы звучат так: «The influence of forces depends on where you are» и «The performance of Porsches depends on the model of cars-. — Прим. пер.
С увеличением расстояния взаимодействия становятся слабее или сильнее за счет виртуальных частиц — короткоживущих частиц, существующих как следствие законов квантовой механики и соотношения неопределенностей. Виртуальные частицы взаимодействуют с калибровочными бозонами и изменяют взаимодействия так, что они становятся зависящими от расстояния, что напоминает то, как друзья Афины исказили слова Икара, передавая их от одного к другому.
Квантовая теория поля показывает, как вычислить влияние виртуальных частиц на зависимость взаимодействий от расстояния и энергии. Одним из триумфов подобных вычислений было объяснение того, почему сильное взаимодействие так сильно. Другим интересным следствием стала потенциальная возможность существования теории Великого объединения (ТВО), в рамках которой столь различные при низких энергиях три негравитационных взаимодействия сливаются в единое взаимодействие при высоких энергиях. Мы воспользуемся ниже этими результатами и теми идеями и вычислениями в квантовой теории поля, которые к ним приводят.
В следующих главах следует иметь в виду насколько сильно различаются масштабы энергий, которые мы обсуждаем. Энергия объединения составляет одну тысячу триллионов ГэВ, а планковский масштаб энергии, на котором гравитация становится сильной, еще примерно в тысячу раз больше. Энергетический масштаб слабых взаимодействий, равный энергии, при которой осуществляются современные эксперименты, неизмеримо меньше; он находится в пределах от ста до тысячи ГэВ. Слабый масштаб энергий настолько же мал по сравнению с энергией Великого объединения, насколько размер мраморного шарика мал по сравнению с расстоянием от Земли до Солнца. Поэтому иногда я буду называть масштаб слабых взаимодействий низкоэнергетическим, несмотря на то что это очень большая энергия с точки зрения экспериментальных перспектив, но в то же время она намного меньше энергетического масштаба Великого объединения и планковского масштаба.
Эффективные теории поля используют идею эффективной теории, о которой шла речь в гл. 1, в приложении к квантовой теории поля. Они концентрируют внимание на тех масштабах энергии и расстояния, которые есть надежда измерить. Эффективная теория поля, примененная на определенном масштабе энергии и расстояния, «эффективно» описывает те энергии и расстояния, которые нас интересуют. Эта теория фокусируется на тех силах и взаимодействиях, которые могут проявиться, когда энергия частиц [118] не превосходит некоторой заданной величины, и пренебрегает энергиями, которые недостижимо выше. Теория не занимается деталями физических процессов и поведения частиц, которые происходят при энергиях, много больших тех, которые можно достичь.
118
Напомним, что квантовая механика и специальная теория относительности позволяют взаимозаменять между собой энергии и расстояния. Для удобства я буду использовать энергии, однако следует иметь в виду, что процессы, происходящие при высоких энергиях, эквивалентны процессам, происходящим на малых расстояниях.
Одно из преимуществ эффективной теории поля состоит в том, что даже если вы не знаете, какие взаимодействия имеют место на коротких расстояниях, вы можете продолжать изучение величин, существенных на интересующих вас масштабах. Вам нужно всего лишь думать о величинах, которые вы можете (в принципе) измерить. Когда вы смешиваете краски, вам не нужно знать их подробную молекулярную структуру. Но, скорее всего, вас интересуют непосредственно воспринимаемые свойства, такие как цвет и текстура. Имея эту информацию, и даже не зная микроструктуру вашей краски, вы можете расклассифицировать краски по их свойствам и предсказать, как будет выглядеть смесь красок, когда вы перенесете их на холст.
Однако, если вам известен химический состав ваших красок, правила физики позволяют установить некоторые их свойства. Эта информация не нужна вам, когда вы рисуете (используете эффективную теорию), но она может оказаться полезной, когда вы смешиваете краски (выводите параметры эффективной теории из более фундаментальной теории).
Аналогично, если вы не знаете, как выглядит теория на малых расстояниях (при больших энергиях), вам не удастся вывести измеримые величины. Однако, если вы знаете детали поведения на малых расстояниях, квантовая теория поля точно указывает, как связаны разные эффективные теории, применяемые при разных энергиях. Квантовая теория поля позволяет вам вывести величины, относящиеся к одной эффективной теории, например, массы или константы взаимодействия, зная величины, относящиеся к другой эффективной теории.
Метод вычисления зависимости наблюдаемых величин от энергии или расстояния, впервые развитый в 1974 году Кеннетом Вильсоном, получил причудливое название ренормализационной группы. Наряду с симметриями, двумя другими самыми мощными инструментами исследования в физике являются методы эффективной теории и ренормализационной группы, причем оба эти метода включают рассмотрение физических процессов на очень разных масштабах расстояний или энергий. Слово «группа» пришло в эту теорию из математики, хотя его математическое происхождение для нас несущественно.
Слово ренормализация звучит получше. Имеется в виду тот факт, что на каждом интересующем нас масштабе расстояний вы делаете паузу, чтобы решить, что делать дальше. Вы определяете, какие частицы и взаимодействия существенны при определенных интересующих вас в данный момент энергиях. Затем вы совершаете новую нормировку, т. е. новую калибровку каждого параметра теории.
Метод ренормализационной группы использует идеи, напоминающие те, которые были описаны в гл. 2. Там мы обсуждали возможность интерпретации теории более высокой размерности на языке теории меньшей размерности и исследовали двумерную теорию с одним малым свернутым измерением, как будто теория была только одномерной. Сворачивая измерения, мы игнорировали все детали того, что происходило внутри лишних измерений, и предполагали, что все можно описать с помощью меньшего числа измерений. Новой «нормировкой» было четырехмерное описание, которое можно было использовать, если сосредоточиться на изучении больших расстояний.
Очень похожую процедуру можно использовать для построении теории, применимой на больших расстояниях, исходя из теории, работающей на малых расстояниях. Для этого решите, какая минимальная длина вас интересует, и «сотрите» физику, относящуюся к меньшим расстояниям. Один из способов сделать это — взять средние значение тех величин, чьи детали поведения могут отличаться только на меньших расстояниях, которыми мы решили пренебречь. Допустим, вы смотрите на решетку, заполненную серыми точками разных оттенков. Тогда, вы буквально усредняете оттенки более мелких точек, чтобы определить тот оттенок более крупных точек, который будет воспроизводить цветовой эффект.
Ваши глаза делают это автоматически, когда вы смотрите на какое-то размытое изображение.
Если вы способны видеть предметы только с заданным уровнем точности и хотите делать полезные вычисления, связывающие измеримые величины, то вам не требуется знать, что происходит на меньших масштабах. Самый эффективный подход часто включает выбор «размера пикселя» в вашей теории, согласующийся с вашим уровнем точности. Таким путем вы можете, например, пренебречь тяжелыми частицами, которые вы никогда не сможете породить, и короткодействующими взаимодействиями, которые никогда не случаются. Вместо этого вы можете сконцентрировать ваши вычисления на частицах и взаимодействиях, относящихся к той энергии, которую удается достичь.