Зеркальные болезни. Рак, диабет, шизофрения, аллергия
Шрифт:
Как только точка, указывающая состояние системы на фазовой диаграмме, пересечет указанную линию фазовых переходов и попадет в другое состояние, длинные оси молекул самопроизвольно и синхронно отклоняются от первой оси на некий угол, что соответствует фазовому переходу II рода. Может ли быть такой фазовый переход сегнетоэлектрическим, т. е. сопровождаться появлением управляемой электрическим полем спонтанной поляризации? Очевидно, — и это было ключевым моментом в рассуждениях Р. Мейера — только в том случае, если каждая молекула имеет спиральную структуру, т. е. не имеет плоскостей симметрии вдоль длинной оси. Спиральная фаза имеет весьма низкую симметрию и единственную ось второго порядка, лежащую в плоскости слоя перпендикулярно первоначальной оси. Вдоль этой оси может располагаться спонтанная поляризация жидкого кристалла в том случае, если молекулы имеют поперечный дипольный момент, параллельный плоскости слоев. Именно этими свойствами — спиральностью и поперечным дипольным моментом — обладают молекулы ДОБАМБЦ. Существенным отличием жидкокристаллических сегнетоэлектриков от кристаллических является то, что в спиральной смектической фазе длинные оси молекул, отклоненные от оси на определенный угол, вращаются вокруг этой оси, образуя в пространстве макроскопическую спираль (геликоид). Этот процесс материализуется в макромасштабе в «ядре» клеток-доменов и может отождествляться со спиральными структурами пятого порядка (ядром) при самоорганизации протеинов. По существу, при приложении электрического поля в направлении, перпендикулярном оси (т. е. в плоскости слоя), происходит «раскручивание» геликоида и установление однородной поляризации и однородного по объему наклона молекул, исчезающих в точке фазового перехода. Спонтанная поляризация зависит от температуры, теплоемкости и диэлектрической восприимчивости вблизи сегнетоэлектрического фазового перехода II рода. Макроскопическая геликоидальная структура может быть «раскручена» также путем смешивания различных жидкокристаллических соединений, имеющих, например, разный знак спирали «отдельных» молекул (правые и левые молекулы), а также специальной обработки поверхностей, удерживающих жидкокристаллический образец (поверхностно стабилизированные сегнетоэлектрические жидкие кристаллы). Фазовый переход спирального слоистого жидкого кристалла в области линии фазового перехода II рода между фазой светится и выглядит очень красочно. В далеком Космосе спиральные подобия зарождаются благодаря описанному механизму. Поэтому, высказав мысль о строении вакуума в виде слоистой структуры, мы будем недалеки от истины. Несмотря на сложную структуру молекул, обладающих спиральностью и поперечным дипольным моментом (как правило, в состав этих молекул входят два или три ароматических кольца, формирующих ее «стержень», а также подвижные цепочечные концевые группы), своеобразная молекулярная инженерия позволяет «конструировать» молекулы по заданной схеме, обеспечивая необходимое значение дипольного момента и локализацию так называемого «спирального» центра, обеспечивающего отсутствие плоскостей симметрии, проходящих через ось молекулы. Нетрудно представить, насколько сложным является теоретическое описание явлений и фазовых переходов в этих «кентаврах» природы; тем не менее, эмпирические закономерности, устанавливаемые физиками и химиками в рядах родственных соединений, позволяют быстро развиваться этому направлению сегнетоэлектрического
В Живом веществе автоволны генерируют и транспортируют энергию, а не вещество. Именно этот момент заставил подумать, что в живых организмах могут происходить ядерные реакции и холодный термоядерный синтез. Активность и мощность этого термоядерного «котла» зависит от вида симметрии. В здоровых клетках и тканях он «укрощен» и идет на генерацию достаточной биоэнергии, а в кубических сингониях идет «вразнос». Плазма здоровых людей светится, раковых больных — нет. Это обусловлено тем, что в них нарушена анизотропия. Я предполагаю, что это свечение наподобие черенковского обусловлено тем, что оно поляризовано параллельно, а не перпендикулярно направлению частиц с высокими энергиями, типа гамма-лучей. Излучение Черенкова возникает, когда электрон движется быстрее света. Это ударная световая волна и, следовательно, энергия. В нормальных тканях преобладает анизотропия, в раковых — изотропия, как порождение кубических сингоний. Сейчас доказательством того, что в живых организмах происходят ядерные реакции и термоядерный синтез, пока является только рак. Иначе неимоверную энергию раковых клеток не объяснить.
Почему-то бытует мнение, что раковые клетки бессмертны. Потому что они воспроизводятся быстрее, чем умирают? Или медленнее умирают, или вообще не умирают? А может, происходит подмена понятий? Проще взять здоровые и раковые клетки, и пометить материал, который передается по «цепи». Тогда все встанет на свои места. При малигнизации у тканей появляется мотивация стать злокачественными. Попробуем доказать, что ткани и клетки находятся под влиянием закона фазовых переходов системы белок-вода-пространство. В своих книгах я достаточно обоснованно изложил это положение, но возникла необходимость более научно и аргументированно доказать, что так оно и есть. Доказать, что кроме биохимического статуса, существует еще и биофизический, а точнее — существование динамической системы в ГПК и БЭММ, детерминируемой симметрией и биофизическими и физическими полями.
Леонард Хейфлик установил, что в клеточных культурах нормальные диплоидные (соматические) клетки человека способны делиться лишь ограниченное число раз. При этом предельное число делений (называемое также «лимитом Хейфлика») сильно зависит от возраста индивидуума, которому эти клетки изначально принадлежали. Так, клетки, которые брали у новорожденных, делились в культуре 80—90 раз, а у 70-летнего человека — только 20—30 раз. Достигнув «лимита Хейфлика», клетки переходят в состояние одряхления (в англоязычной, а теперь зачастую и в русской литературе называемое сенесенсом, senescence), которое характеризуется резким изменением метаболизма, и в первую очередь нарушением репликации ДНК. Вслед за этим состоянием обычно следует гибель клеток. Самообновляемость живой системы внутри себя не является достаточным фактором противодействия старению в целом, так как противодействовать второму закону термодинамики можно только за счет внешних влияний, и эти влияния ведут к эволюции, анек стабилизации любой системы со временем. С позиции информационных представлений, Жизнь есть метастабильное состояние, которое поддерживается и воспроизводится, как термодинамическое, далекое от равновесия явление благодаря обмену веществом и энергией между живой системой и окружающей средой (A. Guerritore, 1987; G. G. Guidorti, 1990). По G. G. Guigotti (1990) поддержание жизни и здоровья состоит в контроле неравновесия, «контролируемом неравновесии», а болезнь, по существу, является информационным беспорядком. Закон необходимого разнообразия (У. Р. Эшби, 1962) означает, что живой организм должен постоянно заниматься накоплением информации против градиента, определяемого вторым законом термодинамики. Надежность функционирования системы зависит от величины информационной избыточности. В биологических системах снижение избыточности приводит к нарушению саморегуляции гомеостатических механизмов функционирования, но вместе с тем информационная надежность системы прямо пропорциональна величине избыточности, хотя она уменьшает скорость передачи информации. Выяснилось, что один из белков апоптоза (Бкл) атакует митохондрии, в результате чего из последних выделяются различные факторы, стимулирующие включение генов смерти, что приводит к фрагментации ДНК, хромосом и гибели клетки. Процесс кристаллизации и переход в твердотельное состояние всего организма наглядно виден в процессе раковой кахексии и старости. Это и потеря воды, фрагментация структур и потеря тканями анизотропии. По образному выражению, рак — это «пасть, открытая для белков». Тем самым вызывается отрицательный азотистый баланс и, как следствие, кахексия. Кахексия — процесс разрушения мышечной ткани, являющийся распространенной причиной гибели больных на последней стадии развития раковых опухолей. Исследователи выяснили, что сопровождающая раковое заболевание потеря веса связана с неправильной деятельностью гликопротеинового комплекса дистрофина, входящего в мембрану мышечных клеток. В организме подопытных мышей, в тканях которых был искусственно спровоцирован недостаток дистрофина, происходило образование опухолей, сопровождающееся стремительной потерей веса, тогда как мыши с нормальным уровнем этого вещества не проявляли никаких признаков болезни при прочих равных условиях. В тканях пациентов, страдающих раковой кахексией, было также зафиксировано резкое снижение уровня дистрофина по сравнению со здоровыми людьми, обладающими стабильным весом. Больные другими формами дистрофии демонстрировали показатели уровня дистрофина, сходные с показателями раковых больных. Раковые клетки высасывают из общего пула аминокислот одну или несколько незаменимых. При раке изменяется количественное соотношение естественных белков плазмы крови, появляются новые белки, а также изменяется количественный состав белков крови. Количественно же меняются и отдельные типы липидов! Деление это невозможно без тубулина, основного белка микротрубочек (от лат. «тубула» — трубочка) веретена деления, с помощью которых «растаскиваются» к полюсам хромосомы. При раке тубулин начинает вести себя не так, как «положено», что приводит к нарушениям в делении. Это признак нарушения фолдинга тубулина или его сателлитов. Почему тубулин ведет себя подобным образом? Потому что на его поведение оказывают влияние все элементы Живого вещества, готовые сотрудничать с раковыми структурами. Интересно, что у примитивной археобактерии метанококка совсем недавно обнаружен белок, очень похожий на тубулин веретена деления. Микробный белок участвует в образовании специального белкового кольца перетяжки между поделившимися клетками. И хотя сходство аминокислотных последовательностей белков микроба и высшей клетки невелико, однако оно очень существенно в месте связывания ГТФ. Да и общая структура белков сходна в своих основных «построениях». Недавнее прочтение генома риккетсии (1111 килобаз или тысяч букв генкода) позволило на молекулярном уровне подтвердить открытие, сделанное лет пятнадцать тому назад. Речь идет об «инвазии» митохондрий в клетки! Поясним, что митохондрии — это органеллы клеток, в которых за счет энергии «сжигания» глюкозы образуется АТФ: сначала две молекулы в бескислородных условиях, а затем еще 36 в присутствии кислорода. Так происходит снабжение клетки энергией. Для ее получения можно есть много малокалорийной травы, а можно получать ее в концентрированной форме, поедая мясо других. Дрожжи — это факультативные микробы, они дышат и с кислородом, и без него. Чем не раковые клетки? Так вот, уже давно высказывалось мнение о том, что хлоропласты растительных клеток (в них идет фотосинтез, и из CO2 и воды «делается» глюкоза) и митохондрии животных — это «чужие» органы, имплантаты древних микроорганизмов в не менее древние клетки. Дело доходит до того, что хлоропласты и митохондрии «передают» ядрам клеток часть своих генов, причем в случае последних весьмазначительную. У риккетсии всего 834 гена, что несравнимо с 4300 генами свободно живущей кишечной палочки. Это генетическое подтверждение давно известного факта упрощения, «регрессии» паразитов и их образа жизни. Им просто не нужны многие гены, поскольку паразиты получают достаточно много от своих хозяев. Но, тем не менее, ученых ждало одно удивительное наблюдение! Выяснилось, что митохондриальной ДНК у риккетсии оказалось почти 70 килобаз. А у нас в митохондриях всего 16 килобаз! Это эволюционный нонсенс. С одной стороны идет понижение симметрии и увеличение порога отрицательной энтропии, а с другой — почему-то уменьшение килобаз. Сравнение генных последовательностей показывает со всей очевидностью, что риккетсия и митохондрии являются. эволюционными родственниками. А дрожжи? Стратегически макроорганизм для своего питания расщепляет белки, жиры и углеводы, а затем строит то, что ему необходимо. Микроорганизм наоборот сначала строит, а потом разрушает то место, где живет. Где здесь место раковым клеткам? И в этом случае они занимают промежуточное положение. В раковых клетках понижено содержание цАМФ и повышено цГМФ. О чем это говорит? Не указывает ли данный факт на то, что они регулируются и реагируют на симметрийные (геометрические) факторы. Они, по большому счету, являются внутриклеточными мессенджерами. Циклический гуанозинмонофосфат или цГМФ: это вещество обычно работает внутри клеток, где участвует в передаче сигналов от внутренней части мембраны клетки к другим ее частям. Однако цГМФ может служить в качестве сигнальной молекулы и во внеклеточном пространстве. Окись азота активирует фермент гуанилатциклазу что приводит к повышению уровня циклического гуанозинмонофосфата (цГМФ). Это можно расценить как влияние клеточных выделений. (Рис. 20) Обратите внимание на «хвост», он весь в кислородных «репьях». Виляя этим «хвостом» и подавая световые сигналы, эта молекула может то, что не позволено другим. Например, накапливаться в раковом гомеостате.
Рис. 20. Молекула цГМФ.
Как образуется злокачественная опухоль? Вначале формируется доброкачественная опухоль. Потом в ее недрах заводится раковый центр, ну а дальше. об этом писано-переписано. В центре доброкачественной опухоли тесно, мало пищи, воды, света и пространства, поэтому единственный выход — агрессия. В больших городах, при скоплении огромного числа особей одной популяции на маленькой территории происходят точно такие же процессы озлокачествления, которые ведут к революциям и т. п. Когда союз раковых клеток достигает определенной величины, они радикально меняют свое поведение. Вот тут-то и начинается собственно рак. Очевидно, этот феномен закономерен для всех биологических организмов. Оказывается, подобно бактериям, метастазы общаются между собой посредством тайного биохимического языка, я бы сказал, полевого или даже геометрического языка. Так же, как бактерии, они выбрасывают в окружающее пространство отходы ферментов — тканевые белки, которые легко соединяются с различными металлическими частичками и образуют т. н. молекулы-блокаторы. Это своего рода панцирь или бункер. Эти блокаторы засоряют все окружающее пространство и парализуют иммунные клетки-убийцы. Раковая клетка, как и бактерия, независима лишь в своем конечном решении — атаке на организм. Во всем остальном ей приходится ориентироваться на окружающую среду и себе подобных. Такое вот «общественное мнение». Лишь когда она узнает, что количество подобных ей клеток вполне достаточно для вероятной победы, это количество переходит в качество — в сигнал, означающий глобальное наступление смерти на жизнь, в сигнал, мобилизующий все клетки-мутанты для атаки. До сей поры не утихают научные споры о том, пользуются ли полезные бактерии и нормальные клетки своим коммуникационным языком, а вредные бактерии и мутировавшие клетки — своим? Как бы там ни было, ясно одно: коммуницируют они в одном и том же информационном поле. Опираясь на многочисленные опыты, немецкие ученые высказали предположение. Как известно, раковая клетка поглощает несравнимо больше питания, делится гораздо быстрее и вообще более агрессивна, чем нормальная. Поэтому закономерно, что информационный «луч», выбрасываемый ею, гораздо мощнее «луча» обычной клетки. То есть транслируемая раковой клеткой информация своей мощностью попросту забивает информационные сообщения нормальных клеток, разобщая и выводя их из строя. В этой ситуации усилия ученых давно направлены на то, чтобы нарушить коммуникацию раковых клеток, создать «помехи», на какой бы волне они ни общались. Однако эти попытки тщетны: они ищут там, где светло, а не там, где есть. Выяснилось, что раковые клетки общаются между собой при обязательном использовании «кейлоновых буйков». Одна из составляющих этого буйка — металлопротеазы (тканевые белки, соединенные с металлическими частицами), при непосредственном и обязательном участии которых и происходит усиленный рост опухоли. Если нарушить синтез металлопротеаз, биохимическая связь раковых клеток нарушается. Метастазы уже действуют вразнобой, вяло, неслаженно. Они не имеют централизованного сигнала к росту и наступлению. Метастазы становятся изолированными от «командного пункта», раковые клетки не знают, на что ориентироваться, наступать или сдаваться. Главное, не терять драгоценное время и помнить: раковые клетки стремятся к «необходимому большинству», и пациенту нужно их опередить, разогнать этот «кворум» и провести глобальное лечение. Кто поздно начинает, того наказывает жизнь. Это красиво звучит в теории, а на практике все выглядит иначе.
Раковая опухоль «ползет», окутанная свободными радикалами и «оплеткой», «не понимая», что ее окружают клетки своего организма. Сама она имеет хороший антиоксидантный механизм, а соседние ткани разрушаются. Если же научиться подавлять антиоксидантные свойства опухолевых клеток, с ними будет гораздо легче справиться. Однако лучше постараться усыпить или «заморозить» опухоль. В таком случае она не проявит свою агрессию к оставшимся здоровым клеткам и организму. Это достаточно легко сделать красителями и гербицидами. Красители не видимы для здоровых клеток, т. к. имеют плоский скелет, как порфирины, а гербициды не имеют рецепторов в высших организмах. Однако под действием этих веществ опухоль, имея примитивное растениеподобное (как у двудольных сорняков) строение, эти «сигналы» улавливает, «осыпается» и может спать годами и десятилетиями.
Согласно результатам моих исследований, в механизмах старения, психических заболеваний и появлении раковых структур первую скрипку играют ароматические аминокислоты и их пространственные изомеры. Этот же механизм распространяется на бактерии, простейших и вирусы. Теперь попробуем увязать эти пространственные «перверсии» и игры аминокислот и протеинов с паразитами. Как известно, в паразитах больше белков, чем в высших организмах. Это прямо-таки «клубок» протеинов и полифосфатов. Для того чтобы доказать связь паразитов и рака, призовем на помощь. агрохимию. Что она нам «говорит»? Для того чтобы уничтожить ненужные сорные травы или вредителей, необходимо нарушить их пищевую цепь или дать сигнал к усыплению. А для того чтобы полностью перебить им «хребет», надо прервать синтез трех-четырех аминокислот. Нетрудно догадаться, что этими «аминокислотами» являются наши знакомые и знакомые знакомых, т. е. полифосфаты. Однако раковые клетки стратегически представляют собой подобие растительных клеток: вегетативный безостановочный рост, разбрасывание «семян», дыхание через CO2, фотосинтез, чувствительность к свету и гормонам, питание всей поверхностью. Больших кустов в многоклеточном организме не вырастишь, поэтому приоритет отдается «бансаи», т. е. микрорастениям и микроорганизмам. Теперь в эту систему добавим витамин C, проколлаген, салициловую кислоту, гормоны, немного щелочных металлов, CO2, и раковый «суп» готов.
Живая субстанция имеет свойство спонтанно светиться, что отличает ее от неживой материи, за исключением некоторых веществ. Причем характер и свойства свечения явно различаются. Самыми известными являются митогенетические лучи. Место митогенетических лучей в самом «быстроволновом» конце спектра, занимаемом ультрафиолетовыми лучами, почти на границе с рентгеном. Это полоса частот от 1,25 до 1,5 триллиона колебаний в секунду. Найден и физический источник этих быстрых колебаний: в спектре вольтовой дуги обнаружены лучи, вызывающие усиленное деление клеток. Таким образом, мы теперь знаем, какова природа излучения, открытого Гурвичем: это электромагнитные волны очень высокой частоты, близкие к ультрафиолетовым. Митогенетические лучи оказались способными, проходя сквозь кварцевую призму, разлагаться на составные части, давать свой спектр. Пользуясь этим свойством, ученые установили, что каждая из основных биохимических реакций — например, процесс распада белка (так называемый протеолиз), процесс распада углеводов (гликолиз) и др. — дают свои характерные митогенетические лучи с совершенно определенной частотой колебаний. Выяснилось, что оно очень чутко реагирует на малейшие изменения в обмене веществ, в общем состоянии организма. У голодных животных кровь перестает излучать, это же наблюдается и у сильно одряхлевших стариков и уставших исследуемых, а у раковых больных иногда уже в самом начале возникновения опухоли излучение крови полностью прекращается. Считается, что в этих процессах основную роль играет азот и его окислы. Это своего рода афродизиак для развития нормальных клеток и тканей. Истинная роль окиси азота в жизнедеятельности человеческих органов и систем еще не до конца изучена. Оказалось, что молекулы этого газа являются важнейшими химическими регуляторами тока крови по сосудам. И потому самым непосредственным образом участвуют в патогенезе многих распространенных болезней — импотенции в том числе. Для полноты картины осталось лишь добавить, что в человеческом организме выработкой окиси азота «заведуют» клетки внутренней оболочки кровеносных сосудов, и производят они этот газ преимущественно из. вышеупомянутого L-аргинина. А не отсюда ли «растут ноги» атеросклеротических бляшек? Да и рак, вероятнее всего, пользуется этой незаменимой аминокислотой. Доказательств тому достаточно. В целом же, «жестоких» побочных эффектов в процессе метаболизма за этой аминокислотой не отмечалось. Однако ее прием не рекомендуется, если у человека в настоящий момент имеется онкологическое заболевание — по крайней мере, такого мнения придерживаются эксперты. Еще одним поводом для осторожности по отношению к аргинин-содержащим пищевым добавкам служит наличие у человека сахарного диабета (или преддиабетического состояния). Вызванные приемом L-аргинина гормональные изменения могут вызвать у больного диабетом значительное повышение уровня глюкозы в крови. И, наконец, специалисты советуют обязательно обсудить с врачом возможность приема этой аминокислоты в случаях, когда у человека имеет место обострение герпетической инфекции. Данный вирус вполне может использовать L-аргинин для своих целей, что, конечно же, крайне нежелательно. Установлено, что хронический дефицит окиси азота в организме приводит к развитию артериальной гипертонии, а хронический избыток к аутоиммунным заболеваниям, вероятнее всего, и к раку. Окись азота — это, по сути, «сексуальные» выделения раковых клеток. Тем самым они расслабляют сосуды для улучшения питания, поэтому цАМФ покидает раковую клетку, а цГМФ накапливается там. Симметрия этого «газа» кубическая. Сосуды злокачественных опухолей двухслойные, поэтому место выделения окиси азота и степень участия в раковом «пожаре» еще требует уточнения. Если это так, то теперь становится понятным механизм формирования «ядра» раковых колоний и участие симметрии, автоколебаний и свечения в этом процессе. По мнению профессора В. Уткина, реальная угроза будущего — загрязнение окисями азота, а вовсе не выброс С0, так как окиси азота — уникальное производное деятельности человека. Здесь я с ним полностью согласен. Рост числа раковых заболеваний обусловлен и этим «человеческим» газом, он действительно все «расслабляет». Существует термин «разумная жизнь». Значит, есть и неразумная жизнь? Видимо, да, рак можно смело отнести к таковой. Или же это влияние специфических биологических полей или поля Жизни. Физики остановили фотон, эмбриологи заморозили эмбрион. Невозможно уловить и «остановить» только поле. Вывод относительно биологического поля напрашивается сам собой. Оно есть, оно носит материалистический характер и имеет физические параметры. Не залезая в дебри физики самых разнообразных физических полей, дадим наиболее общее и простое определение поля: поле — это та часть пространства, которая оказывает воздействие на помещенное в нее пробное тело. Нет живых систем без поля, при делении клетки делится и ее поле. Неравновесность, динамичность, т. е. необратимое изменение (развитие) поля во времени с необходимостью обеспечивает неидентичность дочерних клеток, образовавшихся при делении, что, между прочим, и так запрещено квантовой механикой. Эти же свойства поля с необходимостью обеспечивают эволюционный процесс, идущий в определенном направлении, поскольку параметры поля ограничивают значительную часть теоретических возможностей. За счет обмена веществ живая система в ходе развития формирует все больше и больше заряженной структурной энергией биомассы, благодаря чему общий запас ее свободной, т. е. работоспособной, энергии возрастает. Исходя из этого, можно утверждать, что энтропия раковых клеток выше, чем у нормальных. Однако некоторые особенности их поведения говорят об обратном. И вот почему: работа, затрачиваемая на обмен веществ, сама требует расхода энергии. Поэтому процесс можно представить, как преобразование ее из одной формы в другую. Если условно первую ассоциировать с потенциальной, то потенциал только что возникшей живой системы максимален, но общий запас энергии минимален. За счет этого потенциала раковая система и осуществляет обмен веществ. Но что происходит, когда потенциал снижается до такого уровня, который уже не может обеспечить дальнейшее накопление энергии? Карл фон Бауэр постулировал, а затем и экспериментально обосновал, что в таких условиях в живых системах включается механизм, которому трудно найти аналогию в неживой природе. Тем более при раке. Одна часть живой системы передает свой энергетический запас другой части. Казалось бы, при этом живая система в целом ничего не приобретает — ведь энергия просто перераспределяется. Однако мы видим, что перераспределение явно не в пользу организма. Это опять говорит только об одном: рак — это другая симметрия, иная форма жизни или тотальное перераспределение энергии внутри макроорганизма. Живая система способна поддерживать и повышать свою работоспособность, лишь если все ее части — органы, клетки, молекулы — работают на общую цель, как единый ансамбль, но в то же время каждая часть заботится и о собственной работоспособности. Даже намека на первое свойство нельзя увидеть в раковой системе. Запас структурной (системной) энергии, которым раковая система обладает с момента своего возникновения, расходуется на два вида работ. Первый из них, внутренняя работа, направлен на сохранение имеющегося запаса. Второй вид работы — «внешняя» — на поиск энергетических источников в среде (организме), на создание приспособлений для ее извлечения и переработки. Все говорит вначале о частичной, а потом и полной потере обратной связи раковых клеток с организмом. Энергия для выполнения внутренней и внешней работы черпается из одного источника — энергии структур живой системы. Поэтому противоречие между внутренней и внешней работой неизбежно. Единственное надежное решение проблемы — увеличение общего запаса энергии раковой системы, позволяющее увеличить возможности для выполнения обоих видов работ. Значит, рак в процессе своего развития не может находиться не только в равновесном, но даже в стационарном состоянии, т. е. раковая система — это не структура, а неудержимый структурированный процесс, постоянно удаляющий ее от равновесия со средой (организмом). Поэтому «устойчивое неравновесие» следует понимать лишь как устойчивость в отношении к переходу в равновесное со средой (организмом) состояние, но не как отсутствие движения в противоположную сторону. Как же с этой позиции видится эволюция рака в целом? Если рассматривать «биологический вид рак», как ряд размножения однотипных особей, то можно предположить, что эволюция рака, как целого, идет в направлении увеличения запаса ее структурной (системной) энергии, а значит и ее работоспособности и устойчивости. Рак является представителем более древних форм энергопотребления в пересчете на их живую массу. За всю его жизнь энергопотребление должно превышать этот параметр в сравнении с более современными формами. Это свойство высших видов симметрии и, в частности, кубической. Оценить этот параметр можно, измерив у различных опухолей удельное (т. е. приведенное к единице их живой массы) потребление углекислого газа, без которого у них невозможен обмен веществ, за его среднее время жизни. Мы увидим, что этот параметр увеличится в несколько сотен и даже тысяч раз. У самых злокачественных форм рака он самый высокий, т. е. даже по чисто физиологическим свойствам между раковыми и нормальными клетками — разрыв. Увеличение энергопотребления в ходе развития рака сопровождается к тому же все более эффективным превращением потребляемой энергии в «структурную энергию» ракового гомеостата, за счет которой и производится работа по добыванию новой энергии. Жизнь — это особое свойство природы, позволившее выдвинуть гипотезу, не сводимую к известным законам и научно проверяемым теориям. В научном сообществе растет осознание того, что для решительного прорыва в понимании законов жизни уже недостаточно основываться лишь на представлениях, полученных при изучении неживой природы или умирающих фрагментов живых систем. Так называемое «происхождение жизни» упирается только в одно препятствие. Никто не знает, каковы механизмы воплощения неравновесных, целенаправленных, спонтанно зарождающихся и развивающихся в водной среде химико-физических процессов во все более сложно организованные и оформленные структурированные биологические системы. Метод сравнения подобий может открыть с неожиданной стороны то или иное явление. Например, подобия рака с некоторыми процессами в демографии и философии могут дать новое направление мыслям, которые также способны точно указать природу рака.
Итак, посмотрим, как может сформироваться одноклеточный «бессмертный» организм под названием рак только с помощью метода «дивергенции». Это подобие, как никакое другое, описывает возможные интимные механизмы озлокачествления. Представим себе тысячу семей, состоящих из отца, матери и детей. Каждая семья имеет свою, отличную от всех прочих, фамилию, которая наследуется по мужской линии. Предположим, что в каждой семье рождается от 0 до 6 мальчиков, которые обзаводятся впоследствии собственной семьей. Что произойдет с фамилиями через несколько поколений? Компьютерные имитации модели показали, что с течением времени число фамилий будет неуклонно сокращаться. Через 22—23 поколения исчезнут три четверти всех фамилий. В перспективе, если продолжить реализацию программы, сохранится одна фамилия. Таким образом, из однородного материала (все фамилии обладали равными возможностями) образуется популяция однофамильцев. В нашем случае однотипных клеток. И в этом примере появление структуры обязано принципу усиления флуктуации: чем больше преимуществ получает какая-либо из фамилий в силу случайных причин, тем больше у этой фамилии шансов на дальнейшую экспансию. Не напоминает ли нам подобная итерация многочленных систем и «схождение» фамилий в одну «фамилию» раковый гомеостат? Итак, в первоначально однородных системах в силу случайных причин возникают локальные неоднородности — флуктуации однородного состояния (случайные сгущения голодающих амеб, либо случайное преобладание носителей определенной фамилии). Такие неоднородности растут по принципу положительной обратной связи: чем больше выражена неоднородность, тем быстрее она нарастает. Результат роста — либо временные (периодические концентрические волны движущихся к центру колонии амеб, устойчивая во времени популяция однофамильцев), либо пространственные структуры (колонии миксамеб, раковых клеток). В раковой опухоли проявляют себя и то, и другое. А именно, пространственные структуры, сборище однотипных клеток с растущей энтропией. Рассмотренные примеры позволяют выделить свойства системы, необходимые и достаточные для того, чтобы в ней реализовалась самосборка структур по принципу усиления флуктуации. Такими свойствами будут: 1) существование флуктуации в пространстве признаков системы. Это свойство, по-видимому, присуще всем реальным объектам (даже такие упорядоченные системы, как кристаллы, достигают идеальной упорядоченности, т. е. отсутствия флуктуации лишь в абстрактной точке абсолютного ноля температур); 2) рост флуктуации по принципу положительной обратной связи, т. е. по принципу автокаталитической реакции. Если между размерами опухоли и скоростью ее роста существует положительная обратная связь, то конечные размеры опухоли будут большими, чем прежде, и тем большими, чем сильнее и устойчивее окажется обратная связь. Для лечения необходимо не только гасить раковую «флуктуацию», но и перебивать положительную обратную связь. Обратная связь при быстром росте может оборваться, но этого не происходит. Почему? Величина изменений метаболизма прямо связана со скоростью роста. Однако характерно низкое содержание митохондрий. Содержание гликогена и образование АТФ в опухолевых клетках также снижены, а они растут (или делятся?) в десятки и сотни раз быстрее. Это парадокс! Гликонеогенез в опухолевых клетках происходит с большей скоростью, чем в нормальных. Субстратом в большей мере являются аминокислоты, чем лактат. Солидная опухоль массой всего несколько граммов ежедневно выделяет в кровь, лимфу до нескольких миллионов опухолевых клеток. Для раковых клеток характерна «диабетическая» толерантность к глюкозе. Поэтому нарушения метаболизма можно искать либо в рецепторах клеточных мембран, либо в «изомеризации» глюкозы в его пользу. Связи же не рвутся лишь потому, что фибриллы ракового белка (служащие проводниками) растут еще быстрее, чем сами клетки. Так выглядит раковый гомеостат и его фибриллы на стекле. (Рис. 21) Точно так же он выглядит и в организме. Теперь зададимся вопросом: может химиотерапия или рентгенотерапия развернуть подобное образование вспять? Практически это исключено, и лишь по одной причине — это черное «существо» и потусторонний «цветок» совсем из другой симметрии. Для лечения рака и прерывания патогенеза именно в этом месте мы вводим остатки бактерий, живые бактерии и кишечную палочку. Ее же используем и для очистки ран от патогенной флоры. M-17 штамм кишечной палочки люто ненавидит все бактерии, которые угрожают хозяину. При раке, который обманывает «слабую» кишечную палочку, необходимо заменять ее именно этим штаммом. Теперь мы значительно сузили район поиска истоков самой страшной зеркальной болезни — рака. Стоит обратить внимание на важный факт: серотонин, ПУК, одноклеточные, редкие опухоли тонкого кишечника и даже избирательная «игра» с кальцием раковыми клетками, — все укладывается в некую систему. Систему, в которой рак находит своих союзников или «прячется» за ними или под ними. Если мы в эту же зеркальную «систему» вставим и увеличение продолжительности жизни в странах, где применяются гербициды, то химическое «начало» этих болезней и долгожительство также легко объяснимы. Многие гербициды в своей основе состоят из молекул, похожих на гормоны растений, которые способны взаимодействовать с древними структурами (кольцами и цепями), спящими в организмах многоклеточных. Все эти «кольца» и «звенья» движутся и взаимодействуют в ГПК и зависят от состояния БЭММ и ажурной водяной сети. Теперь нам легче искать причины рака, постепенно сжимая петлю на его «кубической» головогруди. Шеи, у него, к сожалению, нет, иначе его давно бы уже удушили, и, конечно же, не химическим оружием. А вот старческую шею можно расправить с помощью этих же обнаруженных механизмов.
Рис. 21. Раковые структуры (плазма крови). Фото (микроскоп 20x40).
Организм, организационной основой которого является многослойная система концентрических и самосогласованных магнитных (торсионных) полей, должен обладать существенной устойчивостью по отношению к различным внешним полевым воздействиям, что можно наблюдать в действительности. Представленная простейшая торсионная модель клетки позволяет объяснить известное отрицательное воздействие «левых» торсионных полей на живые системы. В частности, изменение проницаемости клеточных мембран, снижение поглощения кислорода изолированными митохондриями и т. п. под влиянием «левых» торсионных полей окружающей среды. Это может происходить, прежде всего, вследствие дезориентирующего влияния внешних «левых» торсионных полей на «правые» торсионные поля ионных каналов мембраны. Что, в конечном счете, приводит к нарушению процессов жизнедеятельности клетки. Это мы видим на рис. 21 справа. Здесь явно видны не только элементы двухмерного тора и «сита Серпинского», но и автоволны и моменты кручения. Теперь воочию ясно, что порождение автоволн — спирализация (торсионные поля) — существует и заведует многими интеграционными процессами в организме. Даже из этих нехитрых снимков на стекле (!) видна «нестандартность» раковых структур. Что же тогда творится в организме?!