Живой учебник геометрии
Шрифт:
Применения
52. Огород имеет форму равнобедренного треугольника, одна сторона которого на 40 м длиннее другой. Обвод огорода 200 м. Какова длина каждой стороны? Сколько решений имеет эта задача?
Р е ш е н и е. Если оcнование этого треуголь ника больше боковых сторон, то, обозначив его через х, имеем уравнение
х + х – 40 + х – 40 = 200,
из которого находим: х =280/3 = 93 1/3 м.
Значит, в таком
Если же основание к о р о ч е боковых сторон, то составляем уравнение
y + y + 40 + y + 40 = 200,
из которого y = 40 м. Следовательно, второе решение задачи 40 м, 80 м и 80 м.
53. Кровля, в зависимости от материала, из которого она сделана, должна составлять с горизонтальной линией следующие углы (черт. 137):
Железная и цинковая. . . 30°
Толевая. . . . . . . . . . 18°
Черепичная. . . . . . . . 40°
Тесовая. . . . . . . . . . 45°
Соломенная. . . . . . . . 60°
Зная это, определите, какой угол должны составлять между собой стропильные ноги двускатной крыши в каждом случае.
Р е ш е н и е. Для железной кровли искомый угол равен 180° – 2 ? 300 = 120°; для толевой 180° – 2 ? 18° = 144°; для черепичной 180° – 2 ? 40° = 100°; для тесовой 180° – 2 ? 45° = 90°; для соломенной 180° – 2 ? 60° = 60°.
§ 49. Угол, опирающийся на диаметр
Из свойств равнобедренного треугольника вытекает следующая особенность угла, вписанного в полукруг (черт. 138) или: как его иначе называют – «опирающего на диаметр»:
У г о л, о п и р а ю щ и й с я н а д и а м е т р, р а в е н п р я м о м у.
«Опирающимся на диаметр», или «вписанным в полукруг» называют такой угол, вершина которого лежит на дуге окружности, а стороны проходят через концы диаметра; таковы углы: 1 на черт. 138 и 2 на черт. 139. Желая удостовериться, что такой угол во всех случаях равен 90°, мы соединяем центр О полукруга (черт. 140) с вершиной В угла. Получаем два равнобедренных треугольника АОВ и ВОС (почему они равнобедренные?). В них
уг. 2 = уг. 1
уг. 3 = уг. 4.
Отсюда уг. 2 + уг. 3 (т. е. уг. АВС) = уг. 1 + уг. 4. Но так как уг. АВС + уг. 1 + уг. 4 = 180°, то уг. ABC= 90°.
Этим свойством окружности пользуются нередко для того, чтобы в изделиях проверять полуокружность помощью чертежного треугольника (как?).
§ 50. Прямоугольный треугольник
В треугольнике, мы знаем, может быть только один прямой угол. Такой треугольник называется п р я м о у г о л ь н ы м. Стороны прямоугольного треугольника имеют особые названия: каждая из сторон, между которыми лежит прямой угол, называется к а т е т о м, а сторона против прямого угла называется г и п о т е-н у з о й.
Применения
54. Через точку С (черт. 141) на прямой MNнужно провести перпендикуляр. Как это сделать?
Р е ш е н и е. Отложив (черт. 142) от С в обе стороны по какому-нибудь равному отрезку, т. е. CA= CB, описываем около А и В, как центров, каким-нибудь радиусом
55. Через точку С (черт. 143) вне прямой МN про вести к этой прямой перпендикуляр.
Р е ш е н и е. Около точки С, как около центра, описываем каким-нибудь радиусом дугу АВ (черт. 144);
затем около точек А и В каким-нибудь радиусом описываем дуги D. Прямая DС перпендикулярна к МN. Чтобы убедиться в этом, соединим С и Dс А и В.
Треугольники ACDи ВCD равны (ССС), следовательно, уг. ACD= уг. DCВ, и значит, треугольник АСО = ВСО (СУС). Отсюда уг. AОС = уг. ВОС, а так как эти углы смежные, то они прямые.
56. Объясните, почему каждая точка М прямой ВM, делящей пополам угол АВС (черт. 145) одинаково отстоит от сторон АВ и ВС угла (т. е. почему, например, MK= ML?).
Р е ш е н и е. Треугольники ВML и ВМК равны (УСУ).
§ 51. Равносторонний треугольник
Треугольник с тремя равными сторонами называется р а в н о с т о р о н н и м. Так как против равных сторон в одном и том же треугольнике лежат равные углы, то все углы равностороннего треугольника равны, и, следовательно, каждый из них равен. 180°: 3 = 60°.
Обратно: если каждый угол треугольника равен 60°, то все стороны такого треугольника одинаковы, – потому что, против равных углов в одном и том же треугольнике лежат, равные стороны.
Применения
57. Без транспортира построить угол в 60°. В 30°. В 15°. В 120°. В 75°.
Р е ш е н и е. Строим равносторонний треугольник произвольных размеров; каждый его угол = 60°. Разделив угол этого треугольника пополам, получим угол в 30°. Разделив еще раз пополам, будем иметь угол в 15°. Угол в 120° = 90° + 30°. Угол в 75° =60° + 15° = 90° – 15°.
§ 52. Катет против угла в 30°
Предварительное упражнение