Жизнь как она есть: её зарождение и сущность
Шрифт:
Это означает, что путешествие займет, очень приблизительно, десять тысяч лет. По нашим повседневным стандартам это огромное время, но мы должны задать вопрос, настолько ли оно длительное, что экспедиция непременно потерпит неудачу. Никто еще не сохранял бактерии в холоде в течение времени, хоть в какой-то степени приближающегося к этому, но те результаты, что у нас есть для более коротких периодов времени, говорят о том, что если их осторожно заморозить и подержать достаточное время в холоде, то, действительно, при таком обращении многие бактерии выживут в течение длительных периодов времени. Представляется весьма вероятным, что дальнейшие исследования легко приведут к способам, позволяющим сохранять бактерии в течение периодов времени длиной до десяти тысяч лет, и, возможно, даже до миллиона лет. В любом случае, представляется возможным перевозить такие большие их количества, что можно смириться даже с вполне значительной их потерей, при условии, что, по крайней мере, небольшое их число останется, чтобы заселить новую среду.
Более серьезная проблема заключается в обеспечении надежной работы космического корабля после десяти
Каковы бы ни были особенности космического корабля, представляется вполне вероятным, что он сможет перевезти и доставить очень много микроорганизмов. Судя на нашим ракетам, полезная нагрузка в двести фунтов была бы вполне разумной. Бактерии так малы, что в таком пространстве можно сохранить их от 1016 до 1017 Поскольку это число так велико, бактерии можно упаковать во множество отдельных пакетов. Это намного облегчило бы их доставку. Во время высадки эти пакеты можно было бы рассеять в атмосфере с тем, чтобы они могли достичь поверхности планеты во множестве различных мест. Каждый пакет, вероятно, следует поместить в оболочку, которая могла бы выдержать как тепловой поток, генерированный в процессе трения, по мере прохождения с высокой скоростью через атмосферу, так и сотрясение от удара при падении в океан (те, которые упадут на сушу, могут полностью пропасть). Оказавшись в воде, покрытие, вероятно, должно будет раствориться в ней, освободив таким образом бактерии. Все эти требования выглядят так, как будто их можно легко выполнить, проявив немного изобретательности. Многочисленная доставка имеет то преимущество, что даже если многие из пакетов упадут в неподходящих местах, некоторым повезет, и они найдут благоприятную среду. Для того, чтобы инфицировать стерильную планету, необходимо немного бактерий: может быть, достаточно даже одной, при условии, что она сможет успешно расти и делиться.
Поскольку, вероятно, было бы отправлено множество бактерий, то было бы разумно отправить несколько их видов. Какие именно их виды были бы выбраны, трудно судить, поскольку это до некоторой степени зависело бы от того, какие микроорганизмы имелись на той планете, откуда была отправлена ракета. Поскольку маловероятно, что в атмосфере новой планеты имелось бы много кислорода, то, по-видимому, посылка микроорганизмов, которые предпочитают метаболически усваивать свою пищу, используя кислород, является потерей времени. По- видимому, лучше было бы отправить те, которые заранее адаптировались бы к тем условиям, на какие можно было бы рассчитывать на новой планете. Все они могли бы использовать органические соединения в качестве источника энергии, но другие могли бы также использовать энергию, сохраняющуюся в некоторых минералах. По-видимому, крайне желательными были бы фотосинтез и, возможно, способность образовывать споры, по крайней мере, для некоторых организмов. Отправители вполне могли бы разработать совершенно новые штаммы микроорганизмов, специально предназначенные для копирования в пребиотических условиях, хотя не вполне ясно, не лучше ли попытаться сочетать все желаемые свойства в одном типе организма или послать много различных организмов. Каким бы ни оказалось лучшее решение, оно, по-видимому, не представляет очень серьезных трудностей, и такую исследовательскую программу уже можно было бы осуществить фактически сегодня, поскольку мы начинаем разрабатывать очень мощные методы по изменению генетического состава организмов, и особенно микроорганизмов. При изучении в 1976 году обитаемости Марса был сделан вывод, что лучший тип микроорганизмов мог бы основываться на существующих сегодня сине-зеленых водорослях. Как уже утверждалось ранее, поразительно, что древнейшие известные ископаемые микроорганизмы на Земле, по-видимому, как раз представляют организмы такого типа.
Труднее решить, насколько совершенный микроорганизм нам могли бы послать. Если подавляющее требование заключалось в зарождении любой формы жизни, какой бы простой она ни была, и если это считалось рискованным и трудным предприятием, тогда чем проще и сильнее микроорганизм, тем лучше. Если предполагалось, что как только он достигнет подходящей планеты, то положит начало жизни там относительно легко, тогда вполне разумно послать несколько более совершенных микроорганизмов, чтобы по возможности ускорить эволюцию. Если бы мы сами пытались отобрать микроорганизмы, то мы, несомненно, склонялись бы к отправке некоего вида эукариота, то есть клетки с хромосомами, настоящим ядром и полезными макромолекулами, такими как актин и тубулин, которые помогают придать подвижность как клетке, так и ее составляющим. Дрожжи являются примером такой усовершенствованной клетки. Они разрастаются на кислороде, но могут жить и без него.
Если такие организмы послали на Землю в самом начале жизни здесь, то в ископаемых останках мы можем увидеть лишь небольшой их след. Существующие сейчас эукариоты, насколько мы можем судить, появились на сцене намного позже. Всегда можно было бы привести доводы в пользу того, что сюда первоначально был послан некий вид эукариота, но он не смог выдержать конкуренции с лучше приспособленными бактериями, возможно, когда истощились первоначальные запасы пищи в первозданных океанах, и поэтому он вымер. Или же, напротив, он смог отказаться от многих своих особенных свойств и развиться в нечто более простое и более способное справиться с борьбой за выживание. Если была отправлена смесь микроорганизмов, то было бы удивительно, если, начавшись однажды, жизнь затем полностью исчезла, настолько эти мелкие существа сильные и универсальные, но без эксперимента обычно не решаешься предсказывать, какой именно тип организмов выйдет на вершину в окружающей среде, столь далекой от нашего повседневного опыта.
Из этого обсуждения очень явно выясняется одна вещь. В окружающей среде пребиотического океана, особенно ниже неокислительной атмосферы, некоторые микроорганизмы имеют огромное преимущество над любыми высшими формами жизни. Как описано в предыдущей главе, они химически универсальны, кислород не имеет для них большого значения, будучи маленькими, они могут очень быстро размножаться. Добавьте сюда их очень желательные качества как пассажиров: их небольшой размер, способность выдержать замораживание и оттаивание, сравнительное отсутствие у них чувствительности к влиянию радиации, — и мы видим, что они почти идеальны для межпланетного оплодотворения. Может быть, человек, действительно, со временем сможет путешествовать на определенное расстояние в космосе за пределы узких границ Солнечной системы, но, каким бы ни оказалось это расстояние, бактерии могли бы путешествовать дальше. И, насколько мы можем представить себе, это преимущество, вероятно, останется, какими бы значительными ни оказались успехи техники.
Этот момент становится важным, если мы хотим ответить тем, кто убежден, что космическое путешествие, в конечном итоге, окажется очень легким, поскольку они бы стали доказывать, что если можно послать человека, то излишне возиться с бактериями. Если это окажется верным, то все еще существует одна гипотетическая ситуация, в которой направленная панспермия имела бы преимущество. Предположим, что совершенная форма жизни развилась четыре миллиарда лет назад в соседней галактике, такой как Андромеда, но полностью отсутствовала в нашей собственной. Несмотря на то, что эти универсальные существа могли добиться успехов в заселении всей Андромеды, техническая проблема полета в соседнюю галактику могла быть слишком трудна даже для них, чтобы они могли взяться за ее решение. Осознав, что они сами никогда не смогут путешествовать миллион (или около этого) световых лет в космическом пространстве с Андромеды в нашу галактику, они, подобно нам, поняли, что бактерии могли бы путешествовать дальше и послали космические корабли, наполненные микроорганизмами. Хотя нелегко понять, как создать космический корабль, подходящий для такого длительного путешествия, было бы опрометчиво утверждать, что это невозможно, поскольку очень трудно предсказать все технические достижения, которые может принести будущее.
Поскольку бактерии являются такими идеальными пассажирами, то существует ли какая-нибудь форма ракетного двигателя, которая может работать на них, а не на людей? По крайней мере, одна такая есть. Хорошим примером совершенно необычного подхода к проблеме ракеты является предложение Мотнера (Mautner) и Матлофта (Matloft) о том, что можно использовать для снабжения энергией космического корабля усовершенствованные солнечные паруса. У таких парусов, вероятно, должна быть большая площадь, и они должны быть очень тонкими, с тем чтобы давление излучения Солнца превышало силу тяготения Солнца. Авторы рассчитали, что паруса с массой около одной десятой миллиграмма на квадратный сантиметр (а такие материалы уже имеются) оказались бы достаточно тонкими, чтобы позволить космическому кораблю избежать притяжения Солнца. Даже еще более тонкие паруса ускорили бы его отправку. С их помощью трудно достичь очень высоких скоростей, таких как одна сотая скорости света (0,01С), но скорости в диапазоне от одной десятитысячной до одной тысячной (0,0001 до 0,001С), вероятно, можно развить. Эти относительно низкие скорости отчасти ограничат дальность полета космического корабля, поскольку даже при скорости 0,001С преодоление расстояния в десять световых лет заняло бы десять тысяч лет. Это довольно ограничивающие требование, но его следует сопоставить с огромным преимуществом предложения, которое заключается в том, что уменьшение скорости в конце пути могло бы осуществиться с помощью солнечных парусов, и поэтому большой запас топлива для этой операции не нужен, хотя очень небольшое его количество, вероятно, потребуется, чтобы привести в движение многие маленькие пакеты с бактериями, из которых состоит полезная нагрузка на орбитах, где, по крайней мере, некоторые из них могла бы притянуть ожидающая планета.
Авторы рассчитали, что для полезной нагрузки около десяти тонн паруса могли бы иметь радиус около 200 ярдов. Устройство такого корабля очень отличается от более привычных нам, но оно еще более укрепляет предложение, что бактерии могут путешествовать дальше. Это, скорее всего, окажется правдой, каким бы ни был принцип ракетного двигателя и какой бы ни была дальность полета космического корабля, пусть даже она окажется лишь в десять световых лет для корабля с солнечными парусами или длительным путешествием в два миллиона световых лет до Андромеды для какого-то намного более совершенного аппарата.