Журнал "Компьютерра" №720
Шрифт:
Могу предположить (см. врезку), что проблемы, свойственные ЖК-технологии, OLED-дисплеи в ближайшем будущем не решат (по крайней мере, не решат в принципе). У ЭЛТ было одно свойство, которое резко отличает ее от всех остальных технологий: это способ формирования сигнала разверткой последовательности импульсов, каждый из которых соответствует одному пикселу изображения (то есть фактически ТВ-изображение было цифровым в пространственном отношении еще тогда, когда самого этого термина не существовало). Под это свойство даже пришлось подгонять стандарты ТВ. Поэтому там проблемы формирования последовательности "четких стробоскопичных изображений" и в помине не было - целиком изображения как такового в традиционном телевидении не возникает ни на каком этапе. В отличие от этого, способы формирования изображения на матрице любой природы, по сути, есть запись в память последовательности
Мы с коллегой по "Домашнему компьютеру" Денисом Степанцовым (как и некоторые авторы "КТ") полтора-два года назад предрекали большое будущее ЖК-матрицам, совмещенным со светодиодной подсветкой (вместо неэкономичных, плохо управляемых и "не совсем белых" люминесцентных ламп), но, кажется, воз и ныне там. Что-то у производителей не сложилось, если и сейчас в линейке мониторов SpectraView Reference 21 той же NEC стоит один-единственный LCD2180, анонсированный еще на CeBIT 2003. Долго пугала "светодиодными" мониторами Samsung, которая всегда впереди планеты всей хоть в пылесосах, хоть в дисплеях, но что-то среди наиболее рекламируемых на сайте этой фирмы моделей я так ни одного с LCD-подсветкой и не вижу. Проблемы разработчиков понятны: тот же Reference 21 имеет всего 48 светодиодов в матрице подсветки (и, кстати, не белых, а трехцветных), но при этом весит 18 кило за счет огромного радиатора для их охлаждения (вы, кажется, говорили об экономичности?). Да и процессоры далеко не всех, мягко говоря, современных дисплеев хорошо справляются с основными задачами (например, с преобразованием чересстрочного ТВ-сигнала в прогрессивный мониторный, особенно если последний HDTV-формата), - а тут предполагается их еще и нагружать задачей динамического управления матрицей подсветки, без чего "светодиодная" технология почти перестает отличаться от обычной люминесцентной. Так что понятно, почему LaCie и Eizo светодиодной подсветкой заморачиваться не стали.
Поэтому вопрос с динамическими изображениями принципиально решится тогда, когда все плоские экраны смогут манипулировать картинкой в реальном времени с лихостью электронного луча, обегающего экран традиционного кинескопа. И лимитирующий фактор здесь далеко не одно лишь время отклика матрицы - вы только представьте, через сколько преобразований проходит видеоклип в формате MPEG4, пока сформируется в последовательность несжатых растровых цветных 2-мегапиксельных (как и положено для HDTV) изображений со скоростью 60 штук в секунду. И это еще худо-бедно решается - кино для нас, как известно, важнейшее из искусств по количеству прибыли на душу производителя. Но не меньше, если не больше проблем возникает при переводе всех этих многочисленных PAL/SECAM/NTSC (всего их несколько десятков, если учитывать традиционные ТВ-стандарты не только кодирования, но и передачи сигнала, а также цифровое HDTV) в те же самые расжатые растровые картинки в буфере дисплея. Будем надеяться, что тут мы находимся только в начале пути.
Не существовало для ЭЛТ и проблемы "зашарпленного" изображения и углов обзора, которые перейдут по наследству к OLED и другим матричным технологиям (e-paper поставим отдельно - как замену обычной бумаге; тут она, несомненно, свое возьмет). Поэтому осмелюсь обратить ваше внимание на одну набирающую обороты технологию, которая потенциально может послужить заменой ЭЛТ, сохранив ее достоинства и объединив их с достоинствами технологий полупроводниковых на новом уровне. Это - лазерное телевидение.
В отличие от обычных LED, OLED всех нужных цветов и в нужном количестве могут быть сформированы на одной подложке, но все упирается в химию: органические соединения нестойки, могут деградировать со временем и в результате взаимодействия с кислородом воздуха. Срок их службы ограничен (для синих пока не превышает 10 тысяч часов, что приемлемо для мобильных телефонов, но слишком мало, например, для ноутбуков). В результате ситуация с этой технологией начинает напоминать ту, что сложилась с электронной бумагой (e-paper, которую в Штатах чаще называют "электронные чернила", e-ink), - ежеквартально из десятков лабораторий мы получаем победные реляции, а мировая революция как откладывалась на конец очередного "следующего года", так и откладывается. И даже проблемы у OLED с электронной бумагой похожие: кроме всего прочего, изображение надо сформировать. Чтобы сделать это с матрицей OLED, на нее, как и на обычные ЖК-ячейки, нужно наложить матрицу тонкопленочных транзисторов (TFT) и объединить последнюю с управляющими схемами. Ясно, что такой подход плохо сочетается с органической матрицей - делать управляющие транзисторы и микросхемы из органики пока не научились, эта проблема, пожалуй, еще сложнее, чем собственно сформировать матрицу OLED, - а кремнийорганический гибрид выходит дорогим и сложным в производстве. Аналогичная ситуация и с e-paper, главное достоинство которой - сверхмалое потребление - теряется, как только дело доходит до обвязки из формирующих изображение схем. В результате за десятилетие активной разработки на рынке появилось всего несколько устройств на основе той и другой технологии, к тому же в довольно узких областях: для e-paper это воспетая Козловским читалка Sony Reader с ее аналогами, а для OLED - сравнительно недавно (в октябре 2007-го) поступивший в продажу 11-дюймовый телевизор от той же Sony. Вездесущая Samsung, правда, выставила на CES 2008 опытную модель с диагональю 31 дюйм, но обещала начать промышленное производство OLED-телевизоров среднего и крупного размера лишь ближе к 2010 году.
А за это время всякое может случиться - когда-нибудь OLED-технологию, возможно, и "добьют", только нет уверенности, что компромиссы на этом пути не заставят "поступиться принципами" настолько, что пользователь мало что выиграет. В 2004-м Canon и Toshiba уже трясли перед общественностью совместным предприятием SED Inc. по производству FED-панелей (в интерпретации Canon - SED) и собирались в 2006 году выпустить около 3 тысяч 50-дюймовых панелей такого типа. И где они, эти панели?
Идея лазерного дисплея проста и изящна: берется схема обычного кинескопа, и вместо трех электронных пушек, формирующих каждая свое изображение одного из трех основных цветов, ставятся три лазера соответствующего цвета. При этом конструкция предельно упрощается: отпадает необходимость в экологически грязных люминофорах, в высоком напряжении, становится не нужен вакуум и дорогая апертурная решетка, изображение можно проецировать хоть на собственный экран устройства, хоть на стенку. Лазеры дают очень чистые спектральные цвета и с высокой концентрацией энергии в пучке (расхождение лазерного луча - несколько угловых секунд), поэтому, даже если луч будет обегать большую поверхность, для достижения достаточной яркости не требуется большой мощности, а инерционность светового луча наименьшая из теоретически дос тижимой.
Все здорово, кроме одного: световой луч, в отличие от электронного, не управляется магнитными и электрическими полями. Поэтому идея забуксовала на стадии вопроса о том, как осуществлять развертку, и решение этого вопроса заняло у разработчиков почти пятьдесят лет. В начале текущего десятилетия немецкая фирма Schneider Laser Technologies AG совместно с Carl Zeiss выпустила проекционную лазерную установку под названием ZULIP (Zeiss Universal LaserImage Projektor), специально разработанную для планетариев. В принципе, ее можно приспособить для демонстрации любого изображения на очень больших поверхностях. Установка потребляла 2–4 кВт, формировала изображение из 48 тысяч строк, имела разрешение, превышающее HDTV (1920х1080), и не требовала наводки на резкость (лазерный луч дает резкое изображение независимо от расстояния, даже на кривой поверхности).
В этой установке интересны два технологических нюанса: во-первых, "лобовое" решение проблемы развертки с помощью механического вращающегося зеркала, как в пионерских системах телевидения конца XIX - начала ХХ века. Разумеется для монстра ZULIP это вполне приемлемо, но уменьшать размеры такого устройства можно лишь до некоторого предела. Куда интереснее "во-вторых": в этом проекторе впервые в таких масштабах использовались полупроводниковые лазеры (обычные газовые слишком велики для подобных систем).
Проблема полупроводниковых лазеров в том, что получить достаточно мощное устройство можно лишь в красной и инфракрасной области спектра. Для формирования зеленого и голубого лучей использовалось умножение частоты инфракрасного лазера вдвое путем пропускания его излучения через специальные кристаллы, обладающие нелинейными оптическими свойствами (NLO). Таким образом, например, из лазера с длиной волны 920 нм, изготовить который не составляет труда, можно получить голубой луч (460 нм), а из лазера 1064 нм - зеленый (532 нм).