Журнал «Вокруг Света» №04 за 2004 год
Шрифт:
1969— выход критической работы М. Минского, в которой доказывалась невозможность использования однослойных сетей типа персептрона для многих классов задач, из-за чего эта область науки стала непопулярной на долгие годы
1970-е— над исследованием нейросетей продолжали работать очень немногие кибернетики (Т. Кохонен, С. Гроссберг, Дж. Андерсон, Г. Бриндли, Д. Мар, В. Дунин-Барковский, А.Фролов). Прогнозы Минского оказались чрезмерно пессимистичными — многие из неразрешаемых, по его мнению, задач успешно решались многослойными нейросетями
1982— американский биофизик Дж. Хопфилд предложил интересную модель сети, получившей
Середина 1980-х— возникновение настоящего нейросетевого бума по причине возрастающего интереса людей к изучению работы нервной системы и возникновению ряда новых нейромоделей
1986— выход работы Д.Е. Румельхарта, Дж. Е. Хинтона, Р. Дж. Уильямса, в которой был предложен эффективный способ обучения многослойных нейросетей, методом обратного распространения ошибки
1989— анализ варианта 13-й проблемы Гильберта в контексте нейросетевых алгоритмов и доказательство того, что всякую непрерывную функцию нескольких переменных можно с любой точностью приблизить с помощью обычного трехслойного персептрона с достаточным количеством нейронов в скрытом слое
1990-е— развитие новых нейропарадигм несколько замедлилось, зато нейросети и нейрочипы прочно вошли в инженерную практику — нейросетевые методы начали активно использоваться в таких кибернетических направлениях, как «Искусственная жизнь» и «Адаптивное поведение», наряду с традиционным «искусственным интеллектом»
Михаил Алюшин, кандидат технических наук
Постулаты относительного мира
В начале XX века физика пережила две революции — появление теории относительности и рождение квантовой механики, что в совокупности кардинально изменило старые представления и взрастило совершенно новую науку об устройстве мира. Благодаря Эйнштейну, соединившему пространство, время и материю, получилось, что все, что мы видим и воспринимаем в нашем мире, зависит от выбранной нами точки наблюдения и скорости нашего перемещения по отношению к изучаемому объекту.
Две теории — два мира
В 1905 году в немецком журнале «Анналы физики» («Annalen der Physik») появилась самая знаменитая в XX веке научная работа по физике — статья Альберта Эйнштейна «К электродинамике движущихся тел», излагающая основные принципы теории относительности. В современной классификации эта теория получила название «специальной», сокращенно СТО.
Впрочем, устоявшаяся терминология не совсем точно отражает суть вопроса, поскольку в данном случае слово «относительность» означает как раз абсолютность и неизменность скорости света и основных законов природы для наблюдателей в разных системах отсчета. Причем в этой части Эйнштейн вполне солидарен с Галилеем, который утверждал, что никакие физические измерения, к примеру, в трюме парусного корабля не позволят определить, стоит корабль на якоре или равномерно плывет при попутном ветре. Стало быть, нет абсолютного движения тел, есть только относительное — по отношению к другим телам или к некой системе отсчета.
При решении различного рода физических задач ученые достаточно часто переходят из одной системы координат в другую, используя при этом соответствующие правила преобразовании
Многое из того, что ранее представлялось абсолютным, в СТО начало зависеть от движения наблюдателя — это и пространственные размеры тел, и промежутки времени, и даже понятие одновременности. Приведем простой пример.
Стоящему на платформе наблюдателю мчащийся мимо него поезд кажется короче, чем находящимся внутри пассажирам. Время для пассажиров поезда идет медленнее, чем для наблюдателя. Включенный и в первом, и в последнем вагонах свет пассажиры увидят одновременно, наблюдатель же, стоящий на платформе, решит, что в первом вагоне свет зажегся раньше.
Кроме того, с момента появления СТО скорость света в пустоте стала мировой константой, не зависящей ни от движения источника, ни от перемещения наблюдателя. Эта особенность электромагнитных колебаний — из-за огромной величины скорости света (почти 300 тыс. км/с) — долгое время оставалась для физиков неизвестной. Именно это свойство света постоянство его скорости — стало экспериментальным основанием СТО. Этот факт был хорошо известен ученым еще до создания СТО благодаря наблюдениям за двойными звездами и опытам Майкельсона — Морли.
Астрономы, наблюдая за удаленными двойными звездными системами, не замечали никаких особенностей в видимом движении звезд по сравнению с ближайшими к Земле двойными звездами. И это однозначно указывало, что скорость света не складывается со скоростью звезды и свет летит в безвоздушном пространстве со своей, зависящей лишь от свойств этого пространства скоростью.
Опыты Майкельсона и Морли, направленные на выявление зависимости скорости света от движения наблюдателя, привели к отрицательному результату, продемонстрировав, что скорость распространения света — как вдоль земной орбиты, так и поперек ее — одинакова и не влияет на движение источника и приемника света.
Само по себе постоянство скорости света, казалось бы, не могло сильно повлиять на привычную евклидову картину мира с однозначной интерпретацией всех событий и четкой причинно-следственной связью между ними. Но, по Эйнштейну, получалось так, что скорость света — не просто ни от чего не зависящая мировая константа, это еще и предельная скорость, с которой могут перемещаться любые материальные тела, информационные сигналы и физические поля. Таким образом, на фундаментальном уровне сверхсветовое движение оказалось невозможным, и в связи с этим кардинально менялся и весь окружающий мир.