Чтение онлайн

на главную - закладки

Жанры

Журнал «Вокруг Света» №07 за 2007 год
Шрифт:

Снимок пузырьковой камеры, где виден процесс рождения и распада первого зарегистрированного омега-гиперона. K--мезон взаимодействует с протоном, образуются омега--гиперон и два мезона (K0 и K+), которые далее распадаются в другие частицы. Справа: расшифровка снимка. Траектории нейтральных частиц, невидимых в пузырьковой камере, отмечены пунктиром

Пузырьковая камера позволяет визуализировать треки в реальном времени, однако ее главный недостаток заключается в том, что она должна работать непрерывно, цикл за циклом, независимо от того, пролетели частицы или

нет. В подавляющем большинстве случаев на фотографиях ничего нет, а поиск какого-то редкого процесса на десятках тысяч снимков становится очень трудоемким занятием.

Чтобы избавиться от бесполезных циклов работы, физики изобрели искровую камеру. Она тоже визуализирует траектории частиц, но иным, электрическим, способом. В отличие от пузырьковой камеры, ее можно запускать только тогда, когда гарантированно пролетает какая-то частица, что позволяет избавиться от «холостых» снимков. Именно использование искровой камеры позволило в 1962 году открыть мюонное нейтрино.

Современные универсальные детекторы, применяемые на больших ускорителях, устроены намного сложнее. Их главная черта — многослойность. Все вместе разные компоненты детектора извлекают из пролетающих частиц максимум информации: координаты точки рождения, скорость, импульс, энергию и тип. Все это необходимо для понимания того, что именно произошло с частицами из встречных пучков в момент их столкновения.

Ближе всего к точке столкновения расположен вершинный детектор. Его задача — с максимальной точностью восстановить первые сантиметры траектории заряженной частицы. Имея несколько таких траекторий от одного столкновения, можно проследить их до пересечения и с субмиллиметровой точностью восстановить вершину — точку в пространстве, в которой произошло рождение частиц.

Следующими идут трековые детекторы. Они измеряют искривление траектории в магнитном поле и позволяют вычислить импульс частицы. Часто в качестве трековых детекторов используются дрейфовые камеры. В них с мелким шагом натянуты тонкие проволочки под напряжением. Заряды, порожденные пролетевшей частицей, оседают на ближайшей проволочке, сообщая регистрирующей аппаратуре, где пролетела частица. Из сигналов с многих проволочек и складывается траектория частицы.

Следующим слоем расположены черенковские детекторы, которые измеряют скорость пролетевшей заряженной частицы. Зная импульс и скорость, можно затем вычислить массу частицы и определить ее тип. Тут главная проблема состоит в том, что для всех рождающихся частиц скорость очень близка к световой. Требуется устройство, которое надежно различает, например, 95 и 99% скорости света, что при равных импульсах отвечают частицам с массами, различающимися вдвое.

На помощь приходит еще один физический эффект, на этот раз из оптики. Свет распространяется со скоростью с=300 000 км/с только в вакууме. При входе в прозрачную среду с показателем преломления n он замедляется до скорости c/n. А вот элементарные частицы при этом не тормозятся, и поэтому их скорость оказывается выше скорости света в данной среде. В 1934 году советские физики П.А. Вавилов и С.И. Черенков открыли, что такая заряженная частица излучает свет (черенковское излучение) под углом к направлению движения, и этот угол зависит от скорости частицы.

Для создания черенковских детекторов пришлось решить интересную задачу из области материаловедения. Для максимальной эффективности требовалось вещество с показателем преломления n=1,01–1,05. Но ничего подобного в природе не существует (например, для воды n=1,33, а для газов он не превышает n=1,001), и потому нужные материалы пришлось создавать искусственно. Так в детекторах появились аэрогели, которые иногда называют «твердым дымом». В руках кусок аэрогеля вызывает непривычные ощущения: по прочности он примерно как пенопласт, но ощутимо легче него и вдобавок прозрачный. Подбросив аэрогель в воздух, можно заметить, что падает он как бы «неохотно» — ведь он всего в несколько раз плотнее воздуха.

Наконец, внешние слои детектора состоят из нескольких разных калориметров — приборов, измеряющих энергию частиц. Эти компоненты детектора обязаны стоять самыми последними, поскольку для надежного измерения энергии частица должна полностью поглотиться калориметром и передать ему всю свою энергию. Для этого на пути частицы ставятся слои вещества с тяжелыми атомами, при столкновении с которыми порождается лавина вторичных частиц. Лавина застревает в детекторе, и вся ее энергия переходит частично в тепло, а частично — в свет. Эту вспышку улавливают фотоэлектронные умножители. Они превращают ее в электрический сигнал, измеряя который можно с хорошей точностью рассчитать энергию первоначальной частицы.

Все это — стандартная начинка современного детектора, его «анатомия». Но есть еще большая интересная тема, связанная с его «физиологией», с тем, что в нем происходит непосредственно в ходе эксперимента. Сгустки частиц сталкиваются внутри детектора миллионы раз в секунду, и при этом либо рождаются новые частицы, либо происходит упругое рассеяние частиц сгустка. Каждый такой процесс оставляет в разных компонентах детектора много информации. За какие-то доли микросекунды требуется не только собрать всю эту информацию и подготовить детектор к приему следующих частиц, но и успеть предварительно обработать полученные данные. Детектор буквально напичкан сложнейшей электроникой. Важнейшая из электронных систем называется триггером. Он на лету отбирает из всего потока события, интересные с точки зрения физики. Если бы не этот отбор, система хранения данных просто захлебнулась бы чудовищным потоком информации от детекторов. Поэтому создание эффективного триггера — один из важнейших этапов конструирования детектора.

Но даже после отсева объемы получаемой информации остаются огромными. Ожидается, что с LHC будет поступать порядка 10 петабайт (10 миллионов гигабайт) данных в год — грубо говоря, по DVD-диску в несколько секунд. Чтобы осмыслить такое количество информации, потребуется порядка сотни тысяч сегодняшних процессоров, участие в работе примут исследователи со всего мира, а хранение и обработка информации будет вестись с опорой на создаваемую сейчас GRID-технологию, которая обеспечивает глобальное использование распределенных вычислительных ресурсов.

Игорь Иванов, кандидат физико-математических наук

Читайте также на сайте «Вокруг Света»:

Элементарная вселенная

Эффекты ГРИД-среды

Исцеляющий обман

Знаменитый мюнхенский врач-гигиенист Макс Петтенкофер 7 октября 1892 года провел эксперимент, который, по его мнению, должен был окончательно опровергнуть модную теорию Роберта Коха о том, что холера вызывается попаданием в организм специфического микроба. Получив из лаборатории Коха в Берлине культуру холерного вибриона, доктор Петтенкофер развел ее в стакане воды и в присутствии нескольких коллег-медиков выпил получившуюся взвесь до дна. Несмотря на то что в стакане содержалось огромное число микробов, маститый врач так и не заболел холерой.

Cейчас достоверно известно, что Кох был абсолютно прав, и только чудо уберегло доктора Петтенкофера. Одни предполагают, что сотрудники Коха, догадываясь о его намерениях, нарочно прислали ему ослабленный штамм, чтобы не подвергать его опасности. Другие — что сыграли свою роль остатки временного иммунитета, приобретенные во время заболевания холерой в юности. Но в истории медицины этот драматический случай остался прежде всего как ярчайший, хотя и не вполне типичный пример так называемого эффекта плацебо.

Поделиться:
Популярные книги

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Газлайтер. Том 6

Володин Григорий
6. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 6

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Одиссея адмирала Кортеса. Тетралогия

Лысак Сергей Васильевич
Одиссея адмирала Кортеса
Фантастика:
попаданцы
альтернативная история
9.18
рейтинг книги
Одиссея адмирала Кортеса. Тетралогия

Мир в прорези маски

Осинская Олеся
1. Знакомые незнакомцы
Фантастика:
фэнтези
юмористическое фэнтези
9.46
рейтинг книги
Мир в прорези маски

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Отряд

Валериев Игорь
5. Ермак
Фантастика:
альтернативная история
5.25
рейтинг книги
Отряд

Пожиратель душ. Том 1, Том 2

Дорничев Дмитрий
1. Демон
Фантастика:
боевая фантастика
юмористическая фантастика
альтернативная история
5.90
рейтинг книги
Пожиратель душ. Том 1, Том 2

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Охота на попаданку. Бракованная жена

Герр Ольга
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Охота на попаданку. Бракованная жена

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг