А ну-ка, догадайся!
Шрифт:
М-с Клейн.Представьте себе, что у вас есть двойник, который начинает спускаться в тот самый момент, когда вы начинаете восхождение. Независимо от того, с какой бы скоростью ни проходил он отдельные участки маршрута, вы все равно с ним встретитесь.
М-с Клейн.Мы не можем сказать заранее, где именно произойдет встреча, но в том, что она непременно произойдет, нет никаких сомнений. Следовательно, какую-то точку маршрута вы вчера и сегодня миновали в одно и то же время.
Поскольку
Суть знаменитой теоремы о неподвижной точке можно продемонстрировать, взяв пустую коробку и лист бумаги, точно покрывающий ее дно. Пусть каждой точке на листе бумаги соответствует та точка на дне коробки, которая под ней находится. Вынув затем лист из коробки и скатав его в шарик, бросим его обратно в коробку. Топологи доказали, что независимо от того, как именно смят лист бумаги и в какое место на дне коробки попал скатанный из него бумажный шарик, по крайней мере одна точка на листе непременно окажется над соответствующей ей точкой на дне коробки! (См. раздел «Теорема о неподвижной точке» в главе 5 («Топология») книги Р. Куранта, Г. Роббинса«Что такое математика?» [16] )
16
Курант Р., Роббинс Г.Что такое математика? Элементарный очерк идей и методов. Изд. 2-е. — М.: Просвещение, 1967, с 282–285.
Теорема о неподвижной точке, впервые доказанная голландским математиком Брауэром в 1912 г., имеет много необычных приложений. Например, она позволяет утверждать, что в любой момент времени на земном шаре существует такое место, где скорость ветра равна нулю. Другое, не менее удивительное следствие из той же теоремы: на земном шаре всегда существуют по крайней мере две точки-антипода (лежащие на противоположных концах одного диаметра Земли), в которых температура и барометрическое давление совпадают. Аналогичная теорема позволяет доказать, что шар, поросший волосами, невозможно причесать гладко: по крайней мере один волос всегда останется торчать. (В отличие от шара волосатый тор можно причесать гладко.) Хорошим введением в теоремы такого рода может служить статья Марвина Шинброта«Теоремы о неподвижной точке» (Scientific American, январь 1966).
Еще больше, чем точка, проходимая при подъеме и спуске в одно и то же время, Пата удивила эта лестница. По ней можно идти нескончаемо долго только вверх (или только вниз) и при этом возвращаться на исходное место.
Сколько зубцов на этом грозном оружии: два или три?
Не могли бы вы сбить из дощечек эту «сумасшедшую» клеть?
Лестница, х-зубец ( х= 2 или х= 3) и клеть принадлежат к
Автор х-зубца с двумя или тремя зубьями неизвестен. Этот невозможный объект встречается примерно с 1964 г. На обложке мартовского номера журнала Mad за 1965 г. изображен Альфред Э. Нейман, балансирующий таким х-зубцом на указательном пальце.
Автор сумасшедшей клети также неизвестен.
Она изображена на рисунке Мориса Эшера «Бельведер». И невозможная лестница, и невозможный предмет с двумя или тремя зубьями, и сумасшедшая клеть показывают, как легко мы «попадаемся на удочку», считая изображенный на рисунке объект подлинным, хотя в действительности он логически противоречив и, следовательно, не может существовать. Невозможные объекты — своего рода визуальные аналоги таких неразрешимых утверждений, как «Это утверждение ложно», о которых говорилось в главе 1.
Другие примеры невозможных объектов приведены в главе, посвященной оптическим иллюзиям, моей книги «Математический цирк» и в книгах японского художника-графика Митсумасы Анно«Алфавит Анно» и «Неповторимый мир Анно».
Эта извилистая ломаная, напоминающая по форме контур снежинки, не принадлежит к числу невозможных объектов, хотя и парадоксальна. Ее построение мы начнем с контура этой новогодней елки — равностороннего треугольника.
Разделив каждую сторону на 3 равные части, построим на каждой средней части равносторонний треугольник, лежащий снаружи от большого треугольника.
С каждым из меньших треугольников проделаем ту же операцию: разделим их. стороны на 3 равные части и на средних частях построим равносторонние треугольники.
Длина ломаной при этом еще больше возрастет, а сама ломаная станет похожа на шестиугольную снежинку.
С каждым разом ломаная будет становиться все длиннее и красивее.
Продолжая построение, мы можем сделать ломаную сколь угодно длинной. Она может умещаться на почтовой марке и все же быть длиннее, чем расстояние от Земли до самой далекой звезды!
Кривая-снежинка — один из красивейших представителей бесконечного множества кривых, названных патологическимииз-за своих парадоксальных свойств. При неограниченном увеличении числа звеньев длина ломаных в пределе стремится к бесконечности, хотя площадь заключенного внутри ломаных участка плоскости остается конечной. Иначе говоря, если после очередного увеличения числа звеньев ломаной мы станем измерять ее длину и площадь ограничиваемого ею многоугольника, то последовательность длин окажется расходящейся, а последовательность площадей — сходящейся к пределу, равному 8/5 от площади исходного равностороннего треугольника. К предельной кривой ни в одной точке невозможно провести касательную.