Чтение онлайн

на главную

Жанры

А ну-ка, догадайся!
Шрифт:

Итак, недостающий единичный квадрат найден!

Но отчего вытянулся в высоту «квадрат»? От того, что вершина, которая расположена на гипотенузе части, имеющей форму прямоугольника, не совпадает с узлом квадратной решетки, на которую разграфлена бумага. Зная это, вы сможете построить варианты этого парадокса, в которых избыток или недостаток площади больше 1.

Описанный парадокс известен под названием «квадрат Керри» (фокусника-любителя из Нью-Йорка, открывшего основной принцип подобных парадоксов) и существует во множестве вариантов, включающих не только квадраты, но и треугольники. Тем, кто захочет побольше узнать о квадратах и треугольниках, рекомендую обратиться к моим книгам «Математические чудеса и тайны» [10] и «Математические головоломки и развлечения». [11]

10

Гарднер

М.
Математические чудеса и тайны. — М.: Наука, 1964, с 84—102.

11

См. сноску на с 44, с. 125–132.

Куда исчезает фигурка?

Самые забавные варианты этой разновидности парадоксов известны в виде картинок, на которых один из персонажей таинственным образом куда-то исчезает.

Парадоксы с исчезающими фигурками вот уже более ста лет используются в США для рекламы различных товаров. В конце прошлого века известный американский изобретатель головоломок Сэм Лойд придумал вариант парадокса, в котором фигурки китайских воинов располагались по кругу. При повороте диска один из воинов исчезал. С тех пор появилось множество вариантов парадоксов с фигурками, расположенными и вдоль прямой, и по кругу.

Подробно парадоксы такого рода рассмотрены в гл. 5 моей книги «Математические чудеса и тайны» [12] .

Чтобы понять, в чем секрет таинственных исчезновений, начертим на листе бумаги десять линий:

Разрезав лист вдоль пунктирной линии, сдвинем нижнюю часть влево и вниз:

Сосчитаем линии. Их теперь только девять! Спрашивать, какая из десяти линий исчезла, бессмысленно: в действительности 10 исходных линий разрезаются на 18 отрезков, из которых составляются 9 новых линии. Каждая из этих линий на 1/9 длиннее каждой из исходных линий. Если нижнюю часть листа сдвинуть назад, то есть вправо и вверх, возникнут 10 исходных линий, каждая из которых на 1/10 короче любой из тех 9 линий, которые были перед вторым сдвигом.

12

Там же, с. 77–83.

Принцип, положенный в основу многочисленных вариантов парадоксов с исчезновением и появлением, линий и фигурок, давно известен фальшивомонетчикам. Разрезав 9 долларовых купюр на 18 частей вдоль определенных линий защитной сетки и переставив эти части, мошенники получают 10 купюр.

Подделку легко обнаружить, так как цифры номера на фальшивых купюрах оказываются сдвинутыми.

Дело в том, что во избежание подобной подделки номера на купюрах печатаются у противоположных обрезов на разной высоте — вверху и внизу. В 1968 г. в Лондоне за попытку подделать таким образом 5-фунтовую банкноту фальшивомонетчик был осужден на 8 лет тюремного заключения.

Хищение в банке

Хотите верьте, хотите не верьте, но парадоксы с исчезновением фигур имеют нечто общее с методом, которым некий нечистый на руку программист воспользовался, чтобы совершить хищение в одном крупном банке.

Вор.Все гениальное просто! Я могу без труда ежемесячно срывать куш в 500 долларов. Для этого мне достаточно ввести в компьютер программу, по которой счет каждого клиента будет округляться не до ближайшего целого числа пенни, а до пенни в сторону понижения.

Вор.Каждый клиент банка будет ежемесячно терять по полпенни.

Поскольку сумма эта невелика, потери никто не заметит. У банка около 100 000 клиентов, поэтому общая потеря составит 500 долларов. Их компьютер будет ежемесячно переводить на мой счет, а во всех банковских книгах баланс всегда будет сходиться.

Парадоксы с исчезновением фигур основаны на незаметном «похищении» небольших частей фигуры из разных мест. Так, если разрезать на части первый ковер мистера Рэнди и составить из них прямоугольник, то части будут находить друг на друга вдоль главной диагонали, образуя почти незаметный ромб.

Второй ковер мистера Рэнди, если разрезать его на части и составить из них новый ковер, чуть сокращается по высоте.

После того как компьютер переведет на счет вора 500 долларов, некоторые из клиентов банка получат на 1 пенни меньше процентов, чем им причиталось бы.

Тор наизнанку

Топологию иногда называют геометрией на резиновой поверхности, так как она занимается изучением свойств, не изменяющихся при непрерывных деформациях (изгибании, растяжении или сжатии) фигур.

Тор— замечательная поверхность, имеющая форму бублика. Должно быть, вы очень удивитесь, если вам скажут, что проделав в торе из тонкой резины дыру, можно вывернуть его наизнанку. Между тем это действительно возможно, хотя и весьма трудно.

Предположим, что мы приклеили одну ленту вдоль параллели еще не вывернутого тора изнутри, а другую — вдоль меридиана снаружи. Обе ленты не сцеплены.

Вот как выглядит тор после того, как его вывернули наизнанку. Однако что это? Ленты теперь сцеплены! Но два кольца невозможно сцепить, не разрезая и не склеивая хотя бы одно из них. Что-то здесь не так! Что именно?

Тор действительно можно вывернуть наизнанку через проделанное в нем отверстие, но ленты от этого не станут сцепленными. При выворачивании тора наружная и внутренняя ленты меняются местами.

После того как тор вывернут наизнанку, малая лента (меридиан) растягивается в большую (параллель), а большая сжимается в малую. Ленты по-прежнему остаются несцепленными. Объясняется кажущийся парадокс неожиданно просто: художник нарисовал вывернутый тор так, как подсказывала ему интуиция, а не так, как тот выглядит на самом деле.

Резиновую модель тора, например велосипедную камеру, нелегко вывернуть наизнанку через дырочку, так как камеру при этом необходимо очень сильно растягивать. Гораздо легче вывернуть тор, сделанный из мягкой ткани. Сложите квадратный кусок ткани пополам и сшейте края так, чтобы получилась трубка.

Поделиться:
Популярные книги

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

Отмороженный 7.0

Гарцевич Евгений Александрович
7. Отмороженный
Фантастика:
рпг
аниме
5.00
рейтинг книги
Отмороженный 7.0

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Волк 4: Лихие 90-е

Киров Никита
4. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 4: Лихие 90-е

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12