А ну-ка, догадайся!
Шрифт:
То, что колесо рулетки каждый раз крутится независимо от всей предыстории, служит весьма простым доказательством невозможности разработать такую систему игры в рулетку, которая обеспечивала бы игроку преимущество перед игорным домом.
Слово «шансы» имеет два значения. Шансы на то, что брошенная не фальшивая монета упадет вверх «орлом» (или «решкой»), равные, или 1 к 1 (50 на 50 и т. д.). Стремясь извлечь прибыль, букмекер может принимать ставки на «орла» из расчета 4 к 5 (если вы поставите на «орла» 5 долларов и «орел» выпадает, то букмекер выплатит вам 4 доллара).
««Орел» идет 4 к 5», — заявляет букмекер, занижая истинные шансы на выигрыш. В своем «Полном руководстве по азартным играм» Джон Скарн характеризует подобную ситуацию следующим образом:
Если
Придерживаясь любой системы, вы делаете серию ставок, каждая из которых обладает отрицательным математическим ожиданием. Но сколько бы минусов вы ни суммировали, вам никогда не удастся получить плюс…
В постскриптуме к детективному рассказу «Тайна Мари Роже» Эдгар Аллан По сетует на почти полную невозможность убедить обычного читателя в том, что «при игре в кости двукратное выпадение шестерки делает почти невероятным выпадение ее в третий раз и дает все основания поставить против этого любую сумму». Игральная кость, так же как и монета, колесо рулетки и другие «рандомизирующие» устройства, порождает серию независимых событий: на исход очередного бросания никак не влияет вся предыдущая серия бросаний.
Если вы склонны поверить в какую-нибудь из разновидностей ошибки игрока, испытайте ее «в деле»: сыграйте по системе, основанной на приглянувшемся вам варианте ошибки. Например, начните бросать монету, делая ставку 1 к 1 после того, как она выпадает 3 раза подряд вверх одной и той же стороной. Ставьте всегда на противоположную сторону. Иначе говоря, после серии из трех «орлов» ставьте на «решку», а после серии из трех «решек» ставьте на «орла». Сделав 50 ставок, вы обнаружите, что примерно в половине случаев проиграли (мы не утверждаем, что число проигрышей будет в точности равно 25, но оно заведомо будет близко к 25): вероятности выпадения «орла» и «решки», конечно же, равны.
При подсчете вероятностей легко допустить ошибку. Перед вами супружеская чета — кот и кошка.
М-р Кэт.Дорогая, сколько котят родилось у нас на этот раз?
М-с Кэт.Не видишь, что ли? Четверо.
М-р Кэт.А сколько из них мальчики?
М-с К э т.Трудно сказать. Пока я этого и сама не знаю.
М-р Кэт.Мало вероятно, чтобы все четверо — были мальчиками.
М-с Кэт.Мало вероятно, чтобы все четверо были девочками.
М-р Кэт.Возможно, среди них только один мальчик.
М-с Кэт.Возможно, среди них только одна девочка.
М-р Кэт.К чему гадать? Обратимся лучше к теории вероятностей. Каждый котенок с вероятностью 1/2 либо мальчик, либо девочка. Следовательно, если у нас четверо котят, то наиболее вероятно, что среди них два мальчика и две девочки. Ты еще никак их не назвала, дорогая?
Правильно ли рассуждал м-р Кэт? Проверим его теорию. Пусть Мозначает «мальчик», а Д— «девочка». Выпишем все 16 возможных комбинаций.
Только в 2 из 16 случаев все четверо котят одного пола. Вероятность рождения 4 мальчиков или 4 девочек составляет поэтому 2/16 или 1/8. М-р Кэт был прав, считая такое событие маловероятным.
А какова вероятность рождения двух мальчиков и двух девочек?
М-р Кэт считал такую комбинацию наиболее вероятной. Два мальчика и две девочки рождаются в 6 случаях из 16. Вероятность такой комбинации равна 6/16 или 3/8, что больше, чем 1/8. Возможно, м-р Кэт прав.
Для того чтобы окончательно выяснить, прав ли м-р Кэт, нам осталось вычислить вероятность рождения трех мальчиков и одной девочки или трех девочек и одного мальчика. Они рождаются в 8 случаях из 16, поэтому комбинация 3: 1 встречается с вероятностью 8/16, или 1/2, то есть более вероятна, чем комбинация 2:2. Не ошиблись ли мы?
Если мы правильно вычислили все вероятности, то они в сумме должны составлять 1. Их сумма действительно равна 1. Следовательно, мы учли все возможные пропорции полов в группе из 4 котят.
М-р Кэт ошибался. С наибольшей вероятностью можно утверждать, что у него родились либо 3 сына и 1 дочь, либо 3 дочери и 1 сын.
Большинству людей кажется удивительным, что в семье с четырьмя детьми более вероятно встретить трех мальчиков и одну девочку или трех девочек и одного мальчика, чем двух мальчиков и двух девочек.