А ну-ка, догадайся!
Шрифт:
Кривая-снежинка — великолепный повод для того, чтобы освежить в вашей памяти все связанное с понятием предела. Можете ли вы доказать, что если площадь исходного равностороннего треугольника принять за единицу, то площадь части плоскости, заключенной внутри предельной кривой, равна 8/5?
Вот несколько задач на построение, тесно связанных с кривой-снежинкой.
1. Постройте кривую-антиснежинку: вычерчивая равносторонние треугольники, пристраивайте их не снаружи, а изнутри, после чего стирайте их основания. На первом этапе вы получите 3 ромба, соединенные в центре наподобие пропеллера. Имеет ли возникающая в пределе кривая-антиснежинка бесконечную длину? Конечна ли площадь ограничиваемой ею части плоскости?
2. Что произойдет, если
3. Что произойдет, если на каждой стороне строить по нескольку многоугольников?
4. Существуют ли трехмерные аналоги кривой снежинки и ее ближайших сородичей? Например, если на гранях тетраэдров строить тетраэдры, будет ли предельное тело иметь поверхность бесконечной площади? Будет ли его объем конечным?
В статье о патологических кривых, опубликованной в декабрьском номере журнала Scientific Americanза 1976 г., я рассказал о парадоксальной кривой, открытой Уильямом Госпером и названной «кривой дракона». Другая замечательная кривая, открытая Бенуа Мандельбротом, украшает обложку апрельского номера того же журнала за 1978 г. Ей посвящена моя статья, опубликованная в этом номере журнала.
О других патологических кривых, тесно связанных с кривой-снежинкой, рассказывается и в книге Мандельброта«Фрактальная геометрия природы».
Если космический корабль полетит все время прямо, никуда не сворачивая, то будет ли он все более удаляться от Земли?
«Не обязательно, — решил Эйнштейн. — Корабль может вернуться, даже если он все время будет лететь прямо».
Чтобы понять парадокс Эйнштейна, начнем с несчастного пойнтландца. Вся его вселенная — это одна-единственная точка, имеющая нуль измерений.
Обитающий на одномерной линии лайнландец подобен червяку, ползущему по канату: если канат бесконечен, то он может путешествовать сколь угодно далеко как в одну, так и в другую сторону.
< image l:href="#" />Но если канат замкнут наподобие окружности, то вселенная нашего лайнландца неограниченна, хотя и имеет конечную длину.
В какую бы сторону ни полз червяк, он непременно вернется в исходную точку.
Флатландец обитает на двумерной поверхности. Если его вселенная — бесконечная плоскость, то он может путешествовать на любые расстояния в любом направлении.
Но если поверхность, на которой он обитает, замкнута наподобие сферы, то она также неограниченна и конечна. В какую бы сторону ни отправился флатландец, двигаясь все время прямо и никуда не сворачивая, он непременно вернется туда, откуда начал свой путь.
Мы с вами «солидландцы», обитающие в трехмерном мире. Возможно, наш мир простирается бесконечно далеко в каждом из направлений.
Но, может быть, наша Вселенная изогнута в пространстве большего числа измерений и потому неограниченна и конечна? В такой Вселенной, как и полагал Эйнштейн, космический корабль, все время летящий прямо, мог бы вернуться к месту старта.
Когда флатландец совершает кругосветное путешествие по сфере, он как бы движется по полоске, склеенной в кольцо без перекручивания.
Но если флатландец путешествует по листу Мёбиуса, то происходит нечто странное. Полоборота, на которые перекручено полотно листа, как бы переворачивают флатландца на другую сторону: вернувшись в исходную точку, он обнаруживает у себя сердце не слева, а справа!
Если наше пространство перекручено наподобие листа Мёбиуса, то вернувшийся на Землю астронавт может оказаться собственным зеркальным отражением.
Астрономы пока не пришли к единому мнению относительно того, замкнута ли наша Вселенная, как полагал Эйнштейн, или открыта. Ответ на этот вопрос зависит от того, какова масса Вселенной. Согласно общей теории относительности, масса приводит к искривлению пространства — чем больше масса, тем больше кривизна пространства. Большинство специалистов по современной космологии считают, что массы Вселенной недостаточно для столь сильного искривления пространства, которое привело бы к его замыканию. Но вопрос пока остается открытым, поскольку ни природа Вещества, ни распределение его плотности во Вселенной не известны. Не исключено, что во Вселенной имеется «скрытая масса», вполне достаточная для замыкания пространства. (Например, подозревают, что нейтрино обладают положительной массой покоя, в то время как раньше их масса покоя считалась равной нулю.)
Не существует никаких данных, позволяющих утверждать о том, будто наше пространство перекручено, как лист Мёбиуса. Тем не менее ученые, занимающиеся космологией, охотно рассматривают различные модели пространства, в том числе и модели с кручением. Для того чтобы понять, каким образом флатландец, совершив кругосветное путешествие по листу Мёбиуса, переходит в свое зеркальное отражение, важно не упускать из виду одно существенное обстоятельство: нулевую толщину листа Мёбиуса. Любая бумажная модель листа Мёбиуса в действительности представляет собой объемное тело, так как бумага имеет конечную толщину.