Алиса в стране математики
Шрифт:
— Все, — сокрушенно произнесла Герцогиня. — Драка была просто ужасная!
— А вначале у каждого пирата было по два глаза? — спросил Младенец.
— Да, — ответила Герцогиня.
— Тоже мне пираты! — пренебрежительно отозвался Младенец. — Так вот: получается, что после вашей драки двадцать пиратов остались без обоих глаз! Подумайте только — что будут делать двадцать слепых пиратов?! Пиратством они жить уже не смогут, а ничего больше они делать не умеют!
— А если бы пострадали не все пираты? — осторожно спросила Герцогиня.
— Было бы ещё страшнее! — воскликнул Младенец. —
Младенец так разошёлся, что соскочил с рук Герцогини и забегал по крышке рояля.
— А ты правильно подсчитал? — спросила Алиса у Младенца.
— Что же тут считать? — не переставая бегать, пожал плечами Младенец. — Надо всего-навсего перемножить два множества!
— Каких? — удивилась Алиса.
— Множество пиратов, потерявших левый глаз, надо умножить на множество пиратов, потерявших правый глаз! — ответил Младенец. — Вот и получится множество пиратов, потерявших оба глаза!
— Какой способный ребёнок! — подумала Алиса.
— Придётся вам сочинить другую историю, — серьёзно сказал Младенец, останавливаясь перед Герцогиней. — Страшную, но в меру!
— Идите на бал без меня, — вздохнув, обратилась Герцогиня к Коту и Алисе.
— Она придёт позже, — пообещал Младенец, — если, конечно, сочинит подходящую историю!
Кот мягко спрыгнул с клавиатуры, взял Алису под руку, и они вышли из домика.
— Как он так быстро перемножил два множества? — спросила Алиса Кота, когда они зашагали по дороге. — И почему получилось двадцать пиратов? Я умножила шестьдесят три на пятьдесят семь, но у меня получилось совсем не двадцать, а три тысячи пятьсот девяносто один!
— Ты умножила число одних пиратов на число других, — отозвался Кот. — Но умножать-то надо не числа, а множества!
— А как это делать? — поинтересовалась Алиса.
— Сложи число пиратов, которые потеряли левый глаз и число пиратов, которые потеряли правый глаз, — предложил Кот.
— Получится сто двадцать, — сказала Алиса. — Но это тоже слишком много: на двадцать больше, чем было всех пиратов!
— Это как раз и значит, что двадцать пиратов потеряли оба глаза, — сказал Кот. — Ведь когда ты складывала, то таких пиратов ты посчитала дважды!
— Ну конечно! — воскликнула Алиса. — Как раз эти пираты и входят в оба множества! Но я никогда бы не подумала, что при умножении множеств складываются числа...
— Не только складываются, но и вычитаются, — добавил Кот. — Жаль, что Герцогиня ошиблась!
— А почему вы решили, что она ошиблась? — спросила Алиса. — Может, она просто хотела, чтобы история получилась пострашнее?
— В этом и была её ошибка, — сказал Кот. — И теперь из-за этой ошибки она может не попасть на бал!
Алиса оглянулась, но домик уже скрылся из виду. А посмотрев снова вперёд, Алиса увидела море!
— Странно, — подумала она. — Какой же бал может быть на море?
О
Невозможно даже представить себе, как мы могли бы жить в мире, где всё было бы совершенно непохожим одно на другое! Например, на небе сияли бы совершенно разные звёзды, настолько разные, что их нельзя было бы даже назвать одним словом «звёзды»...
Но, к счастью, в том мире, где мы живём, многие предметы чем-то похожи друг на друга, то есть имеют что-то общее. А когда мы замечаем, что предметы имеют что-то общее, мы — вольно или невольно — объединяем их в одно множество. Только благодаря этому мы можем говорить — ведь любое слово обозначает множество сходных предметов. Например, когда мы говорим «человек», мы имеем в виду одного из множества всех людей, когда говорим «зелёный» — предмет из множества всех зелёных предметов. Можно говорить о множестве дней недели и о множестве цветов радуги, множестве книг и о множестве друзей — множества окружают нас со всех сторон!
Немецкий математик Кантор, основатель теории множеств, писал: «Множество — это многое, мыслимое нами как единое»
Кантор жил в XIX веке, однако множествами учёные пользовались очень давно — с тех пор, как начали классифицировать предметы, то есть искать в них общее и различное. (Любая наука начинается именно с классификации!).
Один аргентинский писатель привёл замечательный пример, как не надо классифицировать. Он придумал «некую китайскую энциклопедию», в которой написано, что животные подразделяются на:
а) принадлежащих императору
б) бальзамированных
в) приручённых
г) молочных поросят
д) сирен
е) сказочных
ж) бродячих собак
з) включённых в настоящую классификацию
и) буйствующих, как в безумии
к) неисчислимых
л) нарисованных очень тонкой кисточкой из верблюжьей шерсти
м) прочих
н) только что разбивших кувшин
о) издалека похожих на мух
Эта удивительная «классификация» предоставляет нам прекрасную возможность порассуждать о множествах.
Прежде всего заметим, что каждая строка определяет какое-то множество животных — пусть странное, но множество!
Некоторые из этих множеств не имеют общих элементов — например, множество молочных поросят и множество бродячих собак. А другие множества, наоборот, имеют общие элементы — скажем, множество бродячих собак и множество животных, буйствующих, как в безумии: ведь среди бродячих собак есть и бешеные. Если два множества не имеют общих элементов, говорят, что эти множества не пересекаются, а если общие элементы есть, то говорят, что множества пересекаются. Слово «пересечение» связано с геометрическими фигурами — если две фигуры пересекаются, у них есть общие точки (хотя бы одна!).
Меняя маски
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
рейтинг книги
![Меняя маски](https://style.bubooker.vip/templ/izobr/no_img2.png)