Аппаратные интерфейсы ПК. Энциклопедия
Шрифт:
Набор сигналов модуля SIMM в основном совпадает с сигналами одиночных микросхем динамической памяти. Основные характеристики распространенных модулей приведены в табл. 7.5, более подробное описание — в следующих разделах.
Таблица 7.5. Основные характеристики модулей памяти
Модуль | Разрядность¹, бит | Объем, Мбайт | Тип | Питание, В | Спецификация |
---|---|---|---|---|---|
SIMM-30, SIPP | 8 (9) | 0,25-4 | FPM, EDO | 5 | 60, 70, 80 нс |
SIMM-72 | 32 (36) | 1-32 | FPM, EDO, BEDO | 5 | 50, 60, 70 нс |
DIMM-168-I | 64 (72,80) | 8-256 | FPM, EDO | 5 | 50, 60, 70 нс |
DIMM-168-II | 64 (72, 80) | 8-512 | FPM, EDO | 5, 3,3 | 50, 60, 70 нс |
DIMM-168-II | 64 (72, 80) | 8-1024 | SDRAM | 3,3 | PC66,
|
DIMM-184 | 64 (72, 80) | 128, 256… | DDR SDRAM | 2,5 | PC1600, PC2100 |
AIMM | 32 | 4 | SDRAM | 3,3 | 166 МГц |
100-Pin DIMM | 32 | 4-128 | SDRAM | 3,3 | 100,125 МГц |
100-Pin DIMM | 32 | 4-32 | FPM, EDO | 3,3 | 50, 60 нс |
SO DIMM-72 | 32 (36) | 4-32 | FPM, EDO | 3,3 | 50, 60 нс |
SO DIMM-144 | 64 (72) | 32,64 | FPM, EDO | 3,3 | 50, 60 нс |
SO DIMM-144 | 64 (72) | 32-256 | SDRAM | 3,3 | 66, 100, 125, 133 МГц |
RIMM | 16 (18) | 64, 96, 128, 256 | RDRAM | 2,5 | PC600, PC700, PC800 |
¹ В скобках указана разрядность с учетом битов паритета или ЕСС.
Спецификация быстродействия у разных типов памяти отражает различные параметры и выбирается исходя из технических и маркетинговых соображений. Для асинхронной памяти указывают время доступа (в наносекундах). Для памяти SDRAM указывается тактовая частота, на которой она работает с достойным значением латентности (на более высокой частоте она, возможно, и будет работать, но с большим значением CL). Обозначения PC66, PC100 и PC133 здесь тоже указывают на частоту (отсутствие обозначения соответствует 66 МГц — поначалу иных спецификаций не было), а также на соответствие спецификациям Intel. Для DDR SDRAM числа в спецификации отражают пиковую пропускную способность (Мбайт/с): PC1600 (8 байт, 2×100 МГц), PC2100 (8 байт, 2×133 МГц). Для RDRAM числа в названии (600, 700 и 800) обозначают округленную частоту (2×300, 2×356 и 2×400 МГц) схода двухбайтных данных с конвейера RDRAM. Таким образом, их пиковая производительность составляет 1200, 1424 и 1600 Мбайт/с.
Маркировка модулей SDRAM, согласно спецификациям Intel, имеет вид PCX-abc-defY, где X — частота, МГц; а = CL (Cas Latency, в тактах), b = Trcd (задержка RAS-CAS), с = Trp (время предзаряда RAS), d = Тас (время доступа), e — ревизия последовательной идентификации (SPD), f — резервный символ, Y — символ архитектурных особенностей (R — признак наличия регистров; отсутствие символа означает отсутствие регистров и буферов). Временны́е характеристики задаются в десятках нс, но Тас может задаваться и в наносекундах. Номер ревизии SDP может содержать как последнюю цифру, так и обе. Так, модуль PC100-322-620 работает на частоте 100 МГц при CL = 3 и Тас = 60 нс, SPD ревизии 1.2. Но он может обозначаться и как PC 100-322-60120. Модуль PC100-322-620R имеет те же параметры, но еще снабжен и регистрами.
Существуют адаптеры, преобразующие форматы модулей SIMM (SIMMVerter, SIMMSaver). Они позволяют, например, сложить из четырех SIMM-30 один SIMM-72 или из двух односторонних SIMM-72 сложить один двусторонний. Трудно назвать такие конструктивные решения элегантными и надежными (появляется слишком много механических соединений и контактов), но их применение может быть оправданно при дефиците гнезд на плате. Или, например, при наличии четырех 4-мегабайтных модулей SIMM-30 можно сделать 16-мегабайтный SIMM-72. Следует помнить о повышенной нагрузке на шины, вносимой такими «супермодулями» с непомерным количеством микросхем и проводников.
Для автоматической идентификации наличия и типа установленного модуля применяются различные методы, основанные на считывании конфигурационной информации с модуля (параллельная или последовательная идентификация) или «исследовании» свойств модуля во время начального тестирования по включении питания.
Метод параллельной идентификации начал применяться с модулями SIPP и SIMM-30 фирмы IBM. В интерфейс этих модулей были введены два дополнительных вывода, и по заземленным (на модуле) сигналам системная плата могла распознать наличие и объем установленной памяти. В SIMM-72 для идентификации предназначались 4 вывода (для ECC-модулей — 5), которые должны были нести информацию об объеме, быстродействии и типе применяемой памяти. Этот метод не выдержал натиска новых типов памяти, поскольку описать их важнейшие параметры четырьмя битами невозможно. В SO DIMM-72 используют 7 бит, в DIMM-168 первого поколения — 10, что тоже не решает проблем.
Новые модули памяти — DIMM-168 второго поколения, SO DIMM-144, DIMM-184 используют последовательную идентификацию (Serial Presence Detection). На модуль устанавливается микросхема специальной энергонезависимой памяти с последовательным доступом по двухпроводному интерфейсу I²С, хранящая исчерпывающую конфигурационную информацию. Формат конфигурационных данных стандартизован JEDEC, из доступных 256 байт под параметры пока определены только первые 32 и еще 32 зарезервированы, 64 байта отданы под информацию производителя (табл. 7.6). Основные параметры описываются в явном виде, например, временны́е — в наносекундах, количество бит адреса задается числами. Интерфейс I²С позволяет легко объединять его сигналы со всех модулей, что существенно проще, чем коммутация 4-10 линий параллельной идентификации. На разъем модулей DIMM-168 выведены 3 бита адреса SA[0:2], что позволяет разводкой этих выводов адресовать до восьми модулей с объединенными линиями синхронизации и данных. При необходимости расширения следующие восемь модулей потребуют от контроллера (чипсета) еще только одной двунаправленной или выходной линии. Адрес в SO DIMM-144 фиксирован, так что двухпроводный интерфейс позволяет опрашивать только один модуль, а каждый следующий модуль потребует по одной дополнительной линии.
Таблица 7.6. Назначение байт последовательной идентификации
Байт | Назначение |
---|---|
Стандартизованная информация о микросхеме | |
0 | Число записанных байт конфигурационной памяти |
1 | Разрядность
|
2 | Тип памяти: 00 — резерв, 01 — Std FPM, 02 — EDO, 03 — Pipelined Nibble (BEDO), 04 —SDRAM |
3 | Количество бит адреса строк в банке 1 (биты 0–3) и банке 2 (биты 4–7) по модулю 16 (0 — не определено, 1–1 или 16,2–2 или 17 и т. д.) Если банки одинаковые, то биты 4–7 нулевые |
4 | Количество бит адреса столбцов (аналогично предыдущему) |
5 | Количество банков (рядов микросхем) |
6-7 | Разрядность данных с учетом контрольных бит (если менее 255, байт 7–0) |
8 | Уровень напряжения интерфейса: 0 — 7TL/5B, 01 —LVTTL (не допускает 5 В), 02 — HSTL 1.5, 03 — SSTL 3.3,04 — SSTL 2.5 |
9 | Для DRAM — RAS Access time (в наносекундах). Для SDRAM — минимальное время цикла (Tclk) для максимального значения CL (десятые доли не в BCD-коде) |
10 | Для DRAM — CAS Access time (в наносекундах). Для SDRAM — время доступа относительно тактового импульса (Тас) аналогично предыдущему |
11 | Схема контроля: 00 — Non-Parity, 01 — Parity, 02 — ЕСС |
12 | Частота (тип) регенерации: 00 — Normal (распределенный цикл 156 мкс), 01 — Reduced 0.25х (39 мкс), 02 — Reduced 0.5х (78 мкс), 03 — Extended 2x (313 мкс), 04 — Extended 4x (625 мкс), 05 — Extended 8x (125 мкс). Бит 7 является признаком саморегенерации (биты 6:0 кодируют те же периоды) |
13 | Разрядность микросхем основной памяти, бит. Бит 7 равен 1, если имеется второй банк с удвоенной разрядностью микросхем. Если банк один или оба банка одинаковы, бит 7 равен 0 |
14 | Разрядность микросхем контрольных разрядов, бит (аналогично) |
15-30 | Детальное описание временных и организационных параметров SDRAM |
31 | Объемы банков (рядов микросхем): бит 0–4 Мбайт, бит 1–8 Мбайт, бит 7 — 512 Мбайт, единичное значение устанавливается в одном или нескольких (двух) битах |
32-35 | Время предварительной установки и удержания входных сигналов |
36-61 | Резерв |
62 | Ревизия SPD (две BCD-цифры) |
63 | Контрольная сумма байт 0-62 по модулю 256 |
Информация изготовителя | |
64-71 | Идентификатор производителя по JEDEC |
72 | Код страны производителя |
73-90 | Код изделия (ASCII) |
91-92 | Код модификации |
93-94 | Дата изготовления (wwyy — неделя, год) |
95-98 | Серийный номер |
99-127 | Специальные данные изготовителя |
126 | Спецификация частоты (для Intel) DIMM SDRAM. Частота 66 МГц задается кодом 66h, более высокие значения — числом МГц (100 = 64h) |
127 | Детализация для SDRAM 100 МГц (для Intel) |
Байты 128–255 конфигурационной памяти свободны. Эту область в принципе можно занимать для пометки компьютера (точнее, модуля памяти) с целью привязки программного обеспечения к конкретному экземпляру PC. Однако при неосторожном использовании модулей с микросхемами без защиты от модификации случайная запись в ячейки 0-127 может привести к недоступности модуля памяти. «Оживить» его можно будет только записью корректных данных.
Модули SIMM (Single In-Line Memory Module) и SIPP (Single In-Line Pin Package) представляют собой небольшие печатные платы с односторонним краевым разъемом. Контактами модулей SIMM являются позолоченные (или покрытые специальным сплавом) площадки, расположенные на обеих поверхностях вдоль одной из сторон. Слово Single (одиночный) в названии подразумевает, что пары площадок на обеих сторонах эквивалентны (электрически соединяются между собой). У малораспространенных модулей SIPP контакты штырьковые (pin — иголка); эти контакты при необходимости можно припаять к площадкам модулей SIMM (такие контакты когда-то даже продавались в комплекте с модулями SIMM). Модули SIPP оказались непрактичными — их контакты не выдерживают транспортировки и многократной установки.
На модулях смонтированы микросхемы памяти в корпусах SOJ или TSOP, их адресные входы объединены. Количество и тип микросхем определяются требуемой разрядностью и объемом хранимых данных. Архитектура модулей обеспечивает возможность побайтного обращения, что существенно для записи (byte-write); выбор байт производится отдельным входом
Таблица 7.7. Организация модулей SIMM
Емкость, Мбайт | С паритетом | Без паритета | ||
---|---|---|---|---|
30-pin | 72-pin | 30-pin | 72-pin | |
256 Кбайт | 256 К×9 | – | 256 К×8 | – |
1 | 1 М×9 | 256 К×36 | 1 М×8 | 256 К×32 |
2 | – | 512 К×36 | – | 512 К×32 |
4 | 4 М×9 | 1 М×36 | 4 М×8 | 1 М×32 |
8 | – | 2 М×36 | – | 2 М×32 |
16 | – | 4 М×36 | – | 4 М×32 |
32 | – | 8 М×36 | – | 8 М×32 |
64 | – | 16 М×36 | – | 16 М×32 |