Большая Советская Энциклопедия (АН)
Шрифт:
Дифференцируя уравнения Коши — Римана, нетрудно усмотреть, что действительная и мнимая части функции f = j+iy, аналитичны в области D, удовлетворяют в этой области уравнению Лапласа:
т. е. являются гармоническими функциями. Две гармонические функции, связанные между собой уравнениями Коши — Римана, называются сопряжёнными. В односвязной области D любая гармоническая функция j имеет сопряжённую функцию y и является, тем самым, действительной частью некоторой аналитической в D функции f. Связи с конформными отображениями и гармоническими функциями лежат в основе
Всё сказанное выше относилось к однозначным А. ф. f рассматриваемым в данной области D комплексной плоскости. Задаваясь вопросом о возможности продолжения функции f как А. ф. в большую область, приходят к понятию А. ф., рассматриваемой в целом — во всей своей естественной области существования. При таком продолжении данной функции область её аналитичности, расширяясь, может налегать сама на себя, доставляя новые значения функции в точках плоскости, где она уже была определена. Поэтому А. ф., рассматриваемая в целом, вообще говоря, оказывается многозначной. К необходимости изучения многозначных А. ф. приводят многие вопросы теории функций (обращение функций, нахождение первообразных и построение А. ф. с заданной действительной частью — в многосвязных областях, решение алгебраических уравнений с аналитичными коэффициентами и др.); такими функциями являются
алгебраические функции и т. д. Регулярный процесс, приводящий к полной А. ф., рассматриваемой в своей естественной области существования, был указан К. Вейерштрассом; он носит название аналитического продолжения по Вейерштрассу.
Исходным является понятие элемента А. ф. — степенного ряда с ненулевым радиусом сходимости. Такой элемент W: a + a1(z - z) + a2(z - z)2 + ... + an(z - z)n + ... определяет некоторую А. ф. f в своём круге сходимости K. Пусть z1 — точка круга K, отличная от z. Разлагая функцию f в ряд Тейлора с центром в точке z1, получают новый элемент W1:
b + b1(z -z1) + b2(z- z1)2 + ... +bn (z— z1)n + ... ,
круг сходимости которого обозначают через K1. В общей части кругов K и K1 ряд W1 сходится к той же функции, что и ряд W. Если круг K1 выходит за пределы круга K, то ряд W1 определяет функцию, заданную посредством W, на некотором множестве вне K (где ряд W расходится). В этом случае элемент W1 называется непосредственным аналитичным продолжением элемента W. Пусть W, W1 ..., WN — цепочка элементов такая, что Wi+1 является непосредственным аналитичным продолжением Wi (i = 1, ..., N — 1); тогда элемент WN называется аналитичным продолжением элемента W (посредством данной цепочки элементов). Может оказаться так, что центр круга KN принадлежит кругу K, но элемент WN не является непосредственным аналитичным продолжением элемента W. В этом случае суммы рядов W и WN
Совокупность всех элементов, которые могут быть получены аналитичным продолжением элемента W, образует полную А. ф. (в смысле Вейерштрасса), порожденную элементом W; объединение их кругов сходимости представляет собой (вейерштрассову) область существования этой функции. Из теоремы единственности А. ф. следует, что А. ф. в смысле Вейерштрасса полностью определяется заданием элемента W При этом в качестве исходного может быть взят любой др. элемент, принадлежащий этой функции; полная А. ф. от этого не изменится.
Полная А. ф. f, рассматриваемая как функция точек плоскости, принадлежащих её области существования D, вообще говоря, является многозначной. Чтобы избавиться от многозначности, функцию f рассматривают не как функцию точек плоской области D, а как функцию точек некоторой (лежащей над областью D) многолистной поверхности R такой, что каждой точке области D соответствует столько (проектирующихся в неё) точек поверхности R, сколько различных значений принимает функция f в этой точке: на поверхности R функция f становится однозначной функцией. Идея перехода к таким поверхностям принадлежит Б. Риману, а сами они называются римановы поверхности. Схематическое изображение римановых поверхностей функций
Фиксируем область D, принадлежащую области существования D полной А. ф. f, и какой-либо элемент W функции f с центром в точке области D. Совокупность всех элементов, которые могут быть получены аналитичным продолжением элемента W посредством цепочек, центры которых принадлежат D, называется ветвью А. ф. f . Ветвь многозначной А. ф. может оказаться однозначной А. ф. в области D. Так, например, произвольные ветви функций
Понятие А. ф. нескольких переменных вводится с помощью кратных степенных рядов — совершенно аналогично тому, как это было сделано выше для А. ф. одного переменного. А. ф. нескольких комплексных переменных по своим свойствам также во многом аналогичны А. ф. одного комплексного переменного; однако они обладают и рядом принципиально новых свойств, не имеющих аналогов в теории А. ф. одного переменного. Более общим является понятие А. ф. на комплексных многообразиях (понятие комплексного многообразия является обобщением понятия римановой поверхности для многомерного случая).
Лит.: Привалов И. И., Введение в теорию функций комплексного переменного, 11 изд., М., 1967; Смирнов В. И., Курс высшей математики, 8 изд., т. 3, ч. 2, М.—Л., 1969; Маркушевич А. И., Теория аналитических функций, 2 изд., т. 1—2, М., 1967—68; Лаврентьев М. А., Шабат Б. В., Методы теории функций комплексного переменного, 3 изд., М., 1965; Голузин Г. М., Геометрическая теория функций комплексного переменного, 2 изд., М., 1966; Евграфов М. А., Аналитические функции, 2 изд., М., 1968; Свешников А. Г., Тихонов А. Н., Теория функций комплексной переменной, М., 1967; Фукс Б. А., Теория аналитических функций многих комплексных переменных, 2 изд., М., 1963; Владимиров В. С., Методы теории функций многих комплексных переменных, М., 1964; Маркушевич А. И., Очерки по истории теории аналитических функций, М.— Л., 1951; Математика в СССР за тридцать лет, 1917 — 1947, М.— Л., 1948, с. 319—414; Математика в СССР за сорок лет, 1917 — 1957, т. 1, М., 1959, с. 381—510.