Большая Советская Энциклопедия (АН)
Шрифт:
А. неизвестна и современному законодательству других социалистических государств (Болгарии, Венгрии, Польши, Югославии и др.). А. не применяют и в практике судебно-следственных органов этих государств.
В современном законодательстве буржуазных государств принцип применения уголовного закона по А. прямо не выражен. Однако фактически судебные органы стран англосаксонской системы права (США, Англии) практикуют применение уголовного закона по А. посредством т. н. судебных прецедентов.
С. Г. Новиков.
Аналоговая вычислительная машина
Анало'говая вычисли'тельная маши'на (АВМ), вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся
Особенности представления исходных величин и построения отдельных решающих элементов в значительной мере предопределяют сравнительно большую скорость работы АВМ, простоту программирования и набора задач, ограничивая, однако, область применения и точность получаемого результата. АВМ отличается также малой универсальностью (алгоритмическая ограниченность) — при переходе от решения задач одного класса к другому требуется изменять структуру машины и число решающих элементов.
К первому аналоговому вычислительному устройству относят обычно логарифмическую линейку, появившуюся около 1600. Графики и номограммы — следующая разновидность аналоговых вычислительных устройств — для определения функций нескольких переменных; впервые встречаются в руководствах по навигации в 1791. В 1814 английский учёный Дж. Герман разработал аналоговый прибор — планиметр, предназначенный для определения площади, ограниченной замкнутой кривой на плоскости. Планиметр был усовершенствован в 1854 немецким учёным А. Амслером. Его интегрирующий прибор с катящимся колесом привёл позднее к изобретению английским физиком Дж. Томсоном фрикционного интегратора. В 1876 другой английский физик У. Томсон применил фрикционный интегратор в проекте гармонического анализатора для анализа и предсказывания высоты приливов в различных портах. Он показал в принципе возможность решения дифференциальных уравнений путём соединения нескольких интеграторов, однако из-за низкого уровня техники того времени идея не была реализована.
Первая механическая вычислительная машина для решения дифференциальных уравнений при проектировании кораблей была построена А. Н. Крыловым в 1904. В основу её была положена идея интеграфа — аналогового интегрирующего прибора, разработанного польским математиком Абданк-Абакановичем (1878) для получения интеграла произвольной функции, вычерченной на плоском графике.
Дальнейшее развитие механических интегрирующих машин связано с работами американского учёного В. Буша, под руководством которого была создана чисто механическая интегрирующая машина (1931), а затем её электромеханический. вариант (1942). В 1936 русский инженер Н. Минорский предложил идею электродинамического аналога. Толчок развитию современных АВМ постоянного тока дала разработка Б. Расселом (1942—44, США) решающего усилителя.
Большое значение имели работы советского математика С. А. Гершгорина (1927), заложившие основы построения сеточных моделей. В 1936 в СССР под руководством И. С. Брука были построены механический интегратор и электрический расчётный стол для определения стационарных режимов энергетических систем. В 40-х гг. была начата разработка электромеханического ПУАЗО на переменном токе и первых электронных ламповых интеграторов (Л. И. Гутенмахер). Работы, проведённые под руководством Гутенмахера (1945—46), привели к созданию первых электронных аналоговых машин с повторением решения. В 1949 в СССР под руководством В. Б. Ушакова, В. А. Трапезникова, В. А. Котельникова, С. А. Лебедева был построен ряд АВМ на постоянном токе. Эти работы положили начало развитию современной аналоговой вычислительной техники в СССР.
АВМ в основном применяется при решении следующих задач. Контроль и управление. В системах автоматического управления АВМ пользуются, как правило, для определения или формирования закона управления, для вычисления сводных параметров процесса (кпд, мощность, производительность и др.). Если задано математическое выражение, определяющее связь сводного параметра или управляющего воздействия с координатами объекта, АВМ служат для решения соответствующего уравнения. Результат вычислений поступает либо на исполнительный механизм (замкнутая система), либо к оператору. В последнем случае АВМ работает как информационное устройство. Например, АВМ широко распространены для оценки экономической эффективности
Опережающий анализ, основанный на быстродействии. Многократно решая систему уравнений, описывающих управляемый процесс, учитывая его текущие характеристики, АВМ за короткое время «просматривает» большое число вариантов решений, отличающихся значениями параметров, подлежащих изменению при управлении процессом. Намного опережая ход процесса, АВМ прогнозирует сигналы управления, которые могут обеспечить необходимое качество протекания процесса. Найденные машиной значения передаются на регулирующие устройства, например в виде положений их уставок, после чего поиск наилучшего варианта продолжается. В режиме опережающего анализа АВМ выполняют функции либо машин-советчиков, когда оператор пользуется результатами полученных на машине расчётов для ручного или полуавтоматического управления, либо управляющих машин, автоматически учитывающих текущие характеристики процесса и управляющих им по оптимальным показателям. Выбор наилучшего режима технологического процесса осуществляется также самонастраивающимися математическими машинами в режиме опережающего анализа.
Экспериментальное исследование поведения системы с аппаратурой управления или регулирования в лабораторных условиях. С помощью АВМ воспроизводится та часть системы, которая по каким-либо причинам не может быть воспроизведена в лабораторных условиях. Связь АВМ с аппаратурой управления или регулирования в основном осуществляется преобразующими устройствами, в которых машинные переменные изменяются по масштабу и форме представления.
Анализ динамики систем управления или регулирования. Заданные уравнения объекта решаются в выбранном масштабе времени с целью нахождения основных параметров, обеспечивающих требуемое протекание процесса. Особо важны быстродействующие АВМ, с помощью которых в ускоренном масштабе времени можно решать некоторые итеративные задачи, задачи оптимизации, а также реализовать Монте-Карло метод, требующий многократного решения стохастических дифференциальных уравнений. Здесь АВМ резко сокращает время проведения расчётов и делает наглядными результаты.
Решение задач синтеза систем управления и регулирования сводится к подбору по заданным техническим условиям структуры изменяемой части системы, функциональных зависимостей требуемого вида и значений основных параметров. Окончательный результат получается многократным повторением решения и сопоставлением его с принятым критерием близости. Задачи этого типа часто сводятся к отысканию экстремума некоторого функционала.
Решение задач по определению возмущений или полезных сигналов, действующих на систему. В этом случае по дифференциальным уравнениям, описывающим динамическую систему, по значениям начальных условий, известному из эксперимента характеру изменения выходной координаты и статистическим характеристикам шумов в измеряемом сигнале определяется значение возмущения или полезного сигнала на входе. АВМ может также служить для построения приборов, автоматически регистрирующих возмущения и вырабатывающих сигнал управления в зависимости от характера и размера возмущений.
АВМ состоят из некоторого числа решающих элементов, которые по характеру выполняемых математических операций делятся на линейные, нелинейные и логические. Линейные решающие элементы выполняют операции суммирования, интегрирования, перемены знака, умножения на постоянную величину и др. Нелинейные (функциональные преобразователи) воспроизводят нелинейные зависимости. Различают решающие элементы, предназначенные для воспроизведения заданной функции от одного, двух и большего числа аргументов. Из этого класса обычно выделяют устройства для воспроизведения разрывных функций одного аргумента (типичные нелинейности) и множительно-делительные устройства (см. Перемножающее устройство). К логическим решающим элементам относятся устройства непрерывной логики, например предназначенные для выделения наибольшей или наименьшей из нескольких величин, а также устройства дискретной логики, релейные переключающие схемы и некоторые др. специальные блоки. Для связи устройств непрерывной и дискретной логики широко пользуются гибридными логическими устройствами (например, компараторами). Все логические устройства обычно объединяются в одном, получившем название устройства параллельной логики. Оно снабжается своим наборным полем для соединения отдельных логических устройств между собой и с остальными решающими элементами АВМ.