Чтение онлайн

на главную

Жанры

Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Шрифт:

Эти вопросы представляют собой вторую половину межзвездной транспортной проблемы Карла Сагана. Первую половину, которая заключается в том, что червоточина поддерживается с момента своего создания, Саган решил с помощью экзотического вещества. В своей книге Саган описывает червоточину, через которую путешествует Элеанора Эрроувэй, поддерживаемую с помощью экзотического вещества, но эта червоточина была создана в отдаленном прошлом некоторой высокоразвитой цивилизацией, все следы которой утеряны.

Мы, физики, конечно, не испытываем удовольствия, относя создание червоточин к предыстории. Мы хотим знать, как можно и можно ли вообще изменить топологию Вселенной сейчас, в рамках физических законов.

Мы можем представить себе две стратегии

построения червоточины там, где раньше ее не было: квантовую и классическую.

Квантовая стратегия опирается на гравитационные вакуумные флуктуации (Врезка 12.4), т. е. гравитационный аналог электромагнитных вакуумных флуктуаций, обсуждавшихся выше: случайные, вероятностные флуктуации кривизны пространства, вызванные «заимствованием» энергии у соседних областей пространства с последующим ее возвращением. По-видимому, гравитационные вакуумные флуктуации существуют везде, но при обычных обстоятельствах они настолько малы, что никакой экспериментатор никогда их не обнаруживал.

14.3. (То же самое, что и на рис. 13.7.) Диаграммы, иллюстрирующие квантовую пену. Геометрия и топология пространства не являются точно определенными, они являются вероятностными. Например, с вероятностью 0,1 % может существовать пена, показанная на рис. (а), с вероятностью 0,4 % — на рис (б) и с вероятностью 0,02 % — на рис. (в) (и т. д.)

Так же, как случайные движения электрона в вырожденном состоянии при его ограничении во все меньшей области становятся все интенсивнее (глава 4), гравитационные флуктуации вакуума сильнее в маленьких областях. То есть для коротких длин волн они сильнее, чем для длинных. В 1955 г. Джон Уилер сделал первый шаг в объединении законов квантовой механики и законов ОТО. При этом он пришел к выводу, что в области с размером, равным длине Планка — Уилера [138] (1,62х10– 33 см или меньше), флуктуации вакуума настолько огромны, что пространство, которое мы знаем, «вскипает» и превращается в квантовую пену, ту же квантовую пену, которая является ядром сингулярности пространства-времени (глава 13; рис. 14.3).

138

Длина Планка — Уилера равна квадратному корню из площади Планка — Уилера (которая входит в формулу для энтропии черной дыры, глава 12); она задается формулой Gh/c3.

Таким образом, квантовая пена содержится везде: внутри черных дыр, в межзвездном пространстве, в комнате, в которой вы находитесь, в вашем мозгу. Но для того чтобы увидеть ее, нам пришлось бы использовать сверхмощный микроскоп, проникая все глубже и глубже в микромир. Нам пришлось бы перейти из нашего обычного мира (сотни сантиметров) в мир атома (10– 8 см), затем в мир атомного ядра (10– 13 см) и потом еще глубже на двадцать порядков, к 10– 33 см. На всех ранних «больших» масштабах пространство выглядит совершенно гладким с определенной, но «крошечной» кривизной. Но когда масштаб приближается к 10– 32 см, мы увидим, что пространство начинает скручиваться, вначале немного, а затем все более и более сильно. Когда весь окуляр микроскопа займет область 10– 33 см, пространство превратится в накипь вероятностной квантовой пены.

Поскольку квантовая пена находится повсюду, заманчиво представить себе высокоразвитую цивилизацию, которая сумела добраться до квантовой пены, обнаружила в ней червоточину (скажем, ту «большую» на рис. 14.36, наблюдаемую с вероятностью 0,4 %), попыталась ее захватить и расширить до классического размера. Если цивилизация действительно высокоразвита, в 0,4 % случаев ее попытки могли бы привести к успеху. Или нет?

Мы еще недостаточно хорошо знаем законы квантовой гравитации. Прежде

всего мы плохо понимаем саму квантовую пену. Мы даже не на сто процентов уверены, что она существует. Однако такой мысленный эксперимент «сагановского типа» по вытягиванию высокоразвитой цивилизацией червоточины из квантовой пены может оказать нам концептуальную помощь в ближайшие годы в попытке утвердиться в понимании квантовой пены и квантовой гравитации.

Пожалуй, хватит о квантовом методе образования червоточин. В чем заключается классический метод?

Следуя классическому методу, наша высокоразвитая цивилизация попыталась бы деформировать и скрутить пространство на макроскопическом уровне так, чтобы сделать червоточину там, где ее прежде не существовало. Кажется вполне очевидным, что для удачного исхода необходимо прорвать две дыры в пространстве и сшить их вместе. На рис. 14.4 показан пример такой процедуры.

Каждый такой прорыв пространства моментально приводит в точке разрыва к образованию сингулярности пространства-времени, т. е. резкой границы, на которой пространство-время заканчивается. Поскольку сингулярности управляются законами квантовой гравитации, такой способ образования червоточин фактически является не классическим, а квантово-механическим. Пока мы не поймем законов квантовой гравитации, мы не узнаем даже, существует ли он вообще.

Есть ли какой-нибудь выход из этого положения? Можно ли сделать червоточину, не вовлекая в процесс плохо понимаемые нами законы квантовой гравитации, т. е. существует ли чисто классический способ!

14.4. Один из способов изготовления червоточины, (а) В кривизне пространства образуется «карман», (б) Пространство вне кармана слегка сгибается в гиперпространстве. (в) В кармане формируется дырка, прямо под этой дыркой образуется дыра в пространстве, и края дыр «сшиваются» вместе. Этот метод на первый взгляд выглядит классическим (макроскопическим). Однако разрыв производит, по крайне мере, на краткое время, сингулярность в пространстве-времени, которая управляется законами квантовой гравитации; следовательно, этот метод на самом деле является квантовым

Удивительно, но существует — но за это придется заплатить большую цену. В 1966 г. Роберт Герох (студент Уилера в Принстоне) использовал глобальные методы и показал, что можно построить червоточину с помощью гладкой деформации и скручивания пространства-времени, избежав при этом сингулярности. Но это можно сделать только, если в процессе создания во всех системах отсчета будет сворачиваться также и время. [139] Более точно выражаясь, такое создание червоточины требует возможности путешествия назад во времени: каким бы «механизмом» эта червоточина ни создавалась, он, фактически, является машиной времени, которая переносит объекты из более поздних моментов строительства к более ранним (но не раньше начала строительства).

139

Я хотел бы нарисовать простую и понятную схему, как гладко создать червоточину, но, к сожалению, не могу.

Всеобщую реакцию на теорему Героха можно выразить следующими словами (1967): «Конечно, законы физики запрещают существование машины времени, поэтому они будут препятствовать любому классическому методу образования червоточин, т. е. без образования дыр в пространстве».

За десятилетия, прошедшие с 1967 г., мы убедились в том, что некоторые вещи, в которых мы были уверены, оказались неверными. (Например, мы никогда бы не поверили в 1967 г., что черная дыра может испаряться.) Поэтому мы научились некоторой осторожности, в частности, в конце 1980-х годов мы стали задавать вопросы типа: «Запрещают ли на самом деле законы физики машину времени и если да, то почему? Из чего следует такой запрет?» К этому вопросу я вернусь ниже.

Поделиться:
Популярные книги

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Гром над Тверью

Машуков Тимур
1. Гром над миром
Фантастика:
боевая фантастика
5.89
рейтинг книги
Гром над Тверью

Ненастоящий герой. Том 1

N&K@
1. Ненастоящий герой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Ненастоящий герой. Том 1

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Беглец

Кораблев Родион
15. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Беглец

Приручитель женщин-монстров. Том 6

Дорничев Дмитрий
6. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 6

Неудержимый. Книга IX

Боярский Андрей
9. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга IX

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Измена. Испорченная свадьба

Данич Дина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Измена. Испорченная свадьба

Приручитель женщин-монстров. Том 4

Дорничев Дмитрий
4. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 4

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12