? – Число Бога. Золотое сечение – формула мироздания
Шрифт:
или
s1 – d2 = s2.
Поскольку на основании нашего предположения общая мера для s1 и d1 представляет собой также общую меру для d2, последнее равенство доказывает, что она же еще и общая мера для s2. Поэтому мы обнаруживаем, что та единица, которая измеряет s1 и d1,
Приложение 3
Площадь треугольника равна половине произведения его основания на высоту, проведенную к основанию. У треугольника TBC основание BC равно 2а, а высота ТА равна с. Следовательно, площадь треугольника равна с x а. Мы хотим показать, что если квадрат высоты пирамиды h2 равен площади ее треугольной стороны s x a, то s/a равно золотому сечению.
Дано, что
h2 = sx a.
Применив теорему Пифагора к прямоугольному треугольнику TOA, получаем
s2 = h2 + a2.
Теперь подставим значение h2 из первого равенства и получим
s2 = sx a + a2.
Разделим обе части на a2 и получим
(s/a)2 = (s/a)+ 1.
Иными словами, если мы обозначим s/a как x, у нас получится квадратное уравнение
x2 = x+ 1.
В главе 4 показано, что именно это уравнение и описывает золотое сечение.
Приложение 4
Одна из теорем в «Началах» доказывает, что если у двух треугольников одинаковые углы, эти треугольники подобны. А это значит, что форма у этих треугольников совершенно одинаковая и длины сторон соответственно пропорциональны. Если одна сторона одного треугольника вдвое длиннее соответствующей стороны второго треугольника, то это справедливо
Треугольники ADB и DBC подобны, поскольку у них одинаковые углы. Следовательно, отношение AB/DB, то есть отношение сторон треугольников ADB и DBC, равно DB/BC, то есть отношению оснований этих треугольников.
AB/DB= DB/BC.
Однако эти треугольники также равнобедренные, поэтому
DB= DC= AC.
Из вышеприведенных равенств следует, что
AC/BC= AB/AC,
Что означает (согласно определению Евклида), что точка C делит отрезок AB в золотом сечении. Поскольку AD = AB и DB = AC, получаем также, что AD/DB = .
Приложение 5
Квадратные уравнения – это уравнения, имеющие вид
ax2 + bx+ c= 0,
где a, b, c – произвольные числа. Например, в уравнении 2x2 + 3x+ 1 = 0 имеем a = 2, b = 3, c = 1.
Общая формула для поиска двух корней уравнения:
В вышеприведенном примере
В уравнении, описывающем золотое сечение,
x2 – x – 1 = 0,
a = 1, b = –1, c = –1, следовательно, корни:
Приложение 6
Задачу о дележе наследства можно решить следующим образом. Обозначим все наследство как E, а долю каждого из сыновей в безантах – как x (по условию, все они делят наследство поровну).
Первый сын получил
Второй сын получил