Чтение онлайн

на главную

Жанры

? – Число Бога. Золотое сечение – формула мироздания
Шрифт:

Если бы нам был хотя бы на мгновение дарован разум, который понимает, какие силы движут природой и каково взаимное расположение сущностей, ее составляющих, и если бы этот разум обладал к тому же достаточной широтою, чтобы подвергнуть эти данные анализу, он охватил бы одной единой формулой движение и крупнейших тел во вселенной, и легчайшего атома.

И это тот самый Лаплас, который на замечание Наполеона Бонапарта, что в большой книге Лапласа о небесной механике ни словом не упомянут творец, ответил: «Сир, мне нет нужды в подобной гипотезе»!

Совсем недавно математик компании IBM и автор книг Клиффорд А. Пиковер в своей увлекательной книге «Божий ткацкий станок» (Clifford A. Pickover. The Loom of God) писал: «Не знаю, математик ли Бог, однако именно математика – тот ткацкий станок, на котором Господь ткет ткань вселенной… Тот факт, что эту реальность можно описать и достаточно точно вычислить при помощи простых

математических выражений, по-моему, означает, что в основе природы заложена математика».

Сторонники «модифицированного платонического представления» о математике любят подчеркивать, что на протяжении столетий математики создавали (либо «открывали») многочисленные чисто математические объекты, не имея в виду никакого практического применения. Проходили десятилетия, и оказывалось, что эти математические конструкции и модели помогают решить физические задачи. Прекрасные свидетельства подобных процессов, когда математика неожиданно для всех вносила свой вклад в физику, – это плитки Пенроуза и неевклидовы геометрии, однако таких историй на самом деле гораздо больше.

Кроме того, есть много случаев и обратной связи между физикой и математикой, когда физическое явление вдохновляло на создание какой-то математической модели, а потом оказывалось, что эта модель объясняет совершенно иное физическое явление. Превосходный пример – феномен под названием «броуновское движение». В 1827 году английский ботаник Роберт Броун (1773–1858) заметил, что если развести пыльцу в воде, отдельные пылинки начинают оживленно двигаться. Этот эффект объяснил Эйнштейн в 1905 году: броуновское движение – результат столкновений коллоидных частиц с молекулами окружающей жидкости. Каждое столкновение в отдельности настолько слабенькое, что им можно пренебречь, поскольку частички пыльцы в миллионы раз массивнее молекул воды, однако постоянная бомбардировка оказывает кумулятивное воздействие. Так вот, представьте себе, что ту же модель мы обнаруживаем в движении звезд в звездных скоплениях! Там броуновское движение вызвано кумулятивным воздействием множества звезд, проходящих мимо данной конкретной звезды – и каждый проход чуть-чуть влияет на ее движение (посредством гравитации).

Однако существует и совершенно иное – не такое, как «модифицированное платоническое» – представление о природе математики и о причине ее могущества. Согласно этому представлению (оно сложным образом связано с догмами, которые в философии математики клеймят «формализмом» и «конструктивизмом»), математика существует исключительно в человеческом сознании. Математика, какой мы ее знаем, не более чем человеческое изобретение, а разумные цивилизации в других уголках Вселенной вполне могли разработать совершенно иные концепции. Математические объекты в объективной реальности не существуют, это плоды воображения. По словам великого немецкого философа Иммануила Канта, конечная истина математики лежит в вероятности, что ее концепции способен сконструировать человеческий разум. Иначе говоря, в математике Кант подчеркивает свободу– свободу постулировать и изобретать структуры и закономерности.

Подобное представление о математике как об изобретении человека особенно распространено у современных психологов. Например, французский писатель и исследователь Станислас Дехене в своей интересной книге «Чувство числа» (Stanislas Dehaene. The Number Sense, 1997) пишет, что «интуиционизм [для автора – синоним человеческого изобретения], как мне кажется, лучше всего описывает отношения между арифметикой и мозгом человека». О чем-то подобном говорит и последнее предложение книги лингвиста Джорджа Лакоффа и психолога Рафаэля Э. Нуньеса «Откуда взялась математика», которую издал Калифорнийский университет в Беркли в 2000 году (George Lakoff, Rafael E. N"uсez. Where Mathematics Comes From): «У портрета математики человеческое лицо». В основном эти выводы основываются на результатах психологических экспериментов и на неврологических исследованиях функционирования мозга. Эксперименты показывают, что у младенцев есть врожденные механизмы распознавания небольших наборов чисел и что дети спонтанно овладевают простыми арифметическими навыками даже без специального обучения. Кроме того, выявлено, что кора теменной доли головного мозга отвечает за способность обрабатывать числа и символы и обладает соответствующей нейронной структурой. Эта область в обоих полушариях анатомически расположена в месте, где пересекаются нервные связи осязания, зрения и слуха. Существует редкая форма эпилепсии, при которой припадки у больных случаются при попытке совершать арифметические действия, она так и называется epilepsia arithmetices, и электроэнцефалограмма у таких больных показывает аномалии именно в коре теменной доли. А повреждение этого участка влияет на способности к математике, письму и ориентации в пространстве.

Даже если согласиться с представлением о математике как об изобретении человеческого разума, не имеющем отношения к реальности, которое основано исключительно на физиологии и психологии, все равно придется отвечать на два интересных вопроса: почему математика так замечательно описывает Вселенную и как так вышло, что даже продукты чистейшей математики зачастую соответствуют физическим явлениям –

более того, идеально к ним подходят?

Ответ, который дают на оба эти вопроса сторонники теории «человеческого изобретения», также основан на биологической модели: дело в эволюции и естественном отборе. Идея в том, что прогресс в понимании Вселенной и формулировании математических законов, описывающих происходящие в ней явления, достигается посредством масштабного и мучительного эволюционного процесса. Нынешняя модель Вселенной – результат долгой эволюции, в которой было множество фальстартов и тупиков. Естественный отбор уничтожил математические модели, не соответствовавшие наблюдениям и экспериментам, и оставил только удачные. Согласно этой точке зрения все «теории» Вселенной на самом деле не более чем «модели», качества которых определяются исключительно тем, насколько им удается соответствовать данным наблюдений и экспериментов. Безумная модель солнечной системы Кеплера, о которой он написал в своей «Mysterium Cosmographicum», была вполне приемлемой, пока объясняла и предсказывала поведение планет.

То, как часто и с каким успехом результаты чистой математики переходят в область математики прикладной, согласно этой картине, отражает всего лишь перепроизводство концепций, из которых физика отбирает самые подходящие для своих нужд: вот оно, выживание сильнейших! Вот и Годфри Г. Харди, как подчеркивают сторонники теории человеческого изобретения, гордился, что за всю жизнь «не сделал ничего «полезного». Такое представление о математике разделяет, очевидно, и Мэрилин вос Савант, обладательница самого высокого в мире IQцелых 228! Часто цитируют ее слова: «Я склонна думать, что можно изобрести математическое объяснение чего угодно, и материя – не исключение».

По моему скромному мнению, исчерпывающего ответа на загадку эффективности математики не дает ни модифицированная платоническая точка зрения, ни теория естественного отбора (по крайней мере, в традиционной формулировке).

Утверждать, будто математика – изобретение чисто человеческое и так замечательно объясняет явления природы исключительно благодаря эволюции и естественному отбору, значит упускать некоторые важные факты, относящиеся как к природе математики, так и к истории теоретических моделей вселенной. Во-первых, хотя математические законы – например, аксиомы геометрии или теории множеств – и в самом деле творения человеческого разума, однако, сформулировав эти законы, мы сразу же теряем свободу. Определение золотого сечения берется из аксиом Евклидовой геометрии, определение чисел Фибоначчи – из аксиом теории чисел. Однако тот факт, что отношение двух последовательных чисел Фибоначчи сходится к золотому сечению, нам некоторым образом навязан, мы, люди, здесь ничего не решаем и не обладаем свободой выбора. А следовательно, математические объекты, пусть и воображаемые, все же обладают реальными свойствами. Во-вторых, объяснение непостижимого могущества математики нельзя основывать исключительно на эволюции в узком смысле слова. Например, когда Ньютон выдвинул теорию гравитации, данные, которые он пытался истолковать, были точны в лучшем случае до третьего знака после запятой. Однако его математическая модель силы, возникающей между двумя массами во Вселенной, обладает необычайной точностью – больше одной миллионной. Получается, что эта модель не была навязана Ньютону имеющимися на тот момент измерениями движения планет, с одной стороны, а с другой – Ньютон не втискивал природное явление в уже имеющийся математический паттерн. Более того, естественный отбор в общепринятой интерпретации этой концепции здесь вообще ни при чем: дело не в том, что соревновались пять теорий и Ньютонова победила. Нет – теория Ньютона была единственной!

Однако и модифицированное платоническое представление тоже не без изъянов.

Во-первых, важный принципиальный момент: модифицированное платоническое представление о математике на самом деле никак не объясняет, почему математика так замечательно описывает Вселенную. Она лишь подменяет этот вопрос аксиомой, убеждением, что математика лежит в основе физического мира. Просто предполагается, что математика – это символическая копия Вселенной. Роджер Пенроуз – как я уже отмечал, горячий сторонник платонического мира математических форм, – соглашается, что то, «какую именно поразительную роль играет платонический мир математики в физическом мире», остается загадкой. Физик из Оксфордского университета Дэвид Дойч некоторым образом выворачивает этот вопрос наизнанку. В своей книге «Структура реальности» (1997) он спрашивает: «Откуда же берется математическая точность в реальности, состоящей из физики и толкуемой естественнонаучными методами?» Пенроуз добавляет к загадочной эффективности математики еще две тайны. В своей книге «Тени разума» он задается вопросами: «Каким образом столь выдающийся феномен, как разум, может быть объяснен в понятиях материального физического мира?» и «Как вышло, что разум способен «создавать» математические концепции из своего рода умственной модели?» Эти интересные вопросы, совершенно выходящие за рамки нашей книги, имеют отношение к происхождению сознания и к поразительной способности наших довольно-таки примитивных ментальных орудий пробивать дорогу в платонический мир, который для Пенроуза и составляет объективную реальность.

Поделиться:
Популярные книги

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Энфис. Книга 1

Кронос Александр
1. Эрра
Фантастика:
боевая фантастика
рпг
5.70
рейтинг книги
Энфис. Книга 1

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Последний Паладин. Том 5

Саваровский Роман
5. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 5

Вечная Война. Книга V

Винокуров Юрий
5. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
7.29
рейтинг книги
Вечная Война. Книга V

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Приручитель женщин-монстров. Том 2

Дорничев Дмитрий
2. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 2

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Игра топа. Революция

Вяч Павел
3. Игра топа
Фантастика:
фэнтези
7.45
рейтинг книги
Игра топа. Революция