Другое начало
Шрифт:
Всё это заложено как заряд в парменидовско-зеноновской мысли. Несоизмеримость, асимметрия, которую я было назвал первичной, началом бесконечности и производной из нее иррациональности, оказывается в свою очередь производной из точки. Не будь точка безразмерной, Ахиллес конечно сразу же догнал бы черепаху. Парменид и Зенон прямо указали и на решение проблемы с ускользанием точки: ее вернет только движение. Они же брутально, круто указали и на проблему движения, бросили как вызов: движение невозможно; попробуйте если сумеете сдвинуть историю с мертвой точки. Античные имена много говорят. Как Платон широкий, так Аристотель — стремящийся к прекрасному завершению. Он принял вызов элеатов и показал, как возможна история: через цель, полноту всего; история никогда не кончится
Всякая линия — истории, поведения, геометрическая — в важном смысле всегда уже проведена, как Ахиллес всегда уже догнал черепаху. Линия состоит из времени нашего опоздания к событию полноты, к точке мировой сборки. Линия всегда уже есть, и когда мы ее проводим, мы не создаем ее, а возвращаемся к ней в нашей истории из нашего опоздания к событию полноты. Это аристотелевский поворот платоновского, и шире, пифагорейского (а не только эмпедокловского) анамнесиса, воспоминания.
Линия истории заранее встроена в точку теперь. Современное четырехмерное пространство не просто математический конструкт, как его неожиданно правильно определяют в справочниках, но и строго говоря лишний конструкт, происшедший из упущения присутствия времени в начале «трех измерений». Мысль о четвертом измерении спохватилась поздно и пошла слишком окольным путем через громоздкое искусственное построение. Хорошо — и это не исключено, — если возвращение к временн'oму пониманию линии в математике произойдет. Оно, возможно, отчасти уже происходит в концепции элементарной данности не как частицы, а как струны. Важно помнить, что время в античности было встроено в пространство проще, прямее и органичнее, чем в неуклюжем четырехмерном пространстве, где сначала неосторожно допущено мифическое, пустое и схематическое якобы статичное трехмерное пространство, т.е. допущен постулат, по легковерию и ради сомнительной наглядности удовлетворен сомнительный запрос.
Конечно, точка как момент теперь и линия как движение времени трудны, ненаглядны. Но не надо было спешить к ложной простоте. Все равно пришлось от статичной трехмерности отрезвляться к четырехмерному пространству-времени, которое тоже совершенно ненаглядно. Не лучше ли было остаться при ранней органичной ненаглядности. Произошло что-то вроде как если бы человек для простоты и обозримости расстался с руками и ногами, потом приставил протезы и гордился бы тем, что они работают почти так же хорошо.
Как схема четырехмерного пространства-времени возникла по недомыслию о точке и линии в естественных науках и математике, так в гуманитарных науках сложилась схема линейного, кругового, спиралеобразного времени. Она тоже возникла по недоразумению и мешает прочтению Аристотеля в его постоянном отождествлении времени и линии. Нам теперь кажется, что линия тут привлечена как схема времени. Но вчитайтесь: линия не сравнение и не иллюстрация. Точка и мгновение не символически, а бытийно одно; движение линии и времени одинаково созданы и обеспечены точечностью укола. Схема времени как линии между двумя точками, которую выпросил себе Евклид, очень наглядна. Увидеть линию как время, время как линию, проводимую движением одной точки, трудно. Для этого надо возвратить точке полноту укола, знака, на-стоящего, задевающего, татуирующего.
Кажется, правда, что уводящее от наглядности тождество времени и линии должно все-таки приниматься нами спокойнее с тех пор, как мы согласились в физике с ненаглядным четырехмерным пространством.
8. Точка похожа на круг и шар. Что нам очень трудно представить ее без места вне координат — явление того же порядка, как нам трудно (просто невозможно) по настоящему нарисовать ее. Мы ее рисуем при помощи круга, или шара (из-за выпуклости мела), который мы наивно стараемся сделать как можно меньше, надеясь так приблизиться к бесконечной малости точки. Мы уже говорили, что точка и сосредоточивает в себе многое, в конечном счете все, и пред-полагает себя началом многого, в конечном счете всего. Прежде всего линии, которая не обязательно прямая. Линии, выплеснутые сосредоточенной недвижимостью точки, растрачивают ее собранность. Все направления, вызванные точечной собранностью неподвижного мгновения, все исторические пути скоро потеряют простую сосредоточенность точечного начала и задохнутся, устанут и сникнут. Энергия точки не потеряет себя только в себе самой. Она сохранится и в большой точке, в шаре мира, целая собранность, полнота, сосредоточенность которого ничем не уступают собранности точки.
Описание неподвижного перводвигателя в последней главе аристотелевской «Физики» совпадает с описанием точки. Он не имеет частей и величины. Что мир равен точке, неуловим, не имеет как точка частей и величины, мы читаем у Николая Кузанского, и здесь творчески комментирующего Аристотеля.
То, что точка совпадает с бесконечностью, формально содержится в античном понимании величины, которое мы упоминали в суждении Анаксагора об одинаково большой и малой величине всего. Античный бесконечный предел одинаково максимален и минимален в отличие от однобокого современного, который представляется пределом преимущественно в одну сторону, бесконечно малых, и реже слышно, чтобы говорили о пределе в сторону увеличения.
История постепенно распространяет собранность первой точки на событие целого мира, который вбирает всё так, что возвращается к ранней собранности. Откуда идет простейший непространственный укол точки? По Платону, шар головы повторяет шар вселенной. Точка умственна. Из-за безусловной ненаблюдаемости точки единственным, что способно ее осмыслить, будет сосредоточенность, т.е. в каком-то смысле сама же точка. К ней всё таким образом стекается. Парадокс точки содержит в себе все другие. Точка предполагает нашу собранность, иначе ее никак нет. Мы собираемся, если собираемся, полностью всем своим существом. В нашей сосредоточенности собран таким образом целый мир. Попробуй мы отказаться от концентрации, прекратится наука, распадется расписание, которым живет цивилизация. В точке нашего сосредоточения собрано не меньше чем сколько нам может открыться в максимуме мира. История располагается между этими совпадающими полюсами, определена событием целого мира и нашим опозданием к нему.
Мы встречаем с пониманием сообщения о том, что космогоническая гипотеза большого взрыва сейчас переживает трудности. Представление времени как рельсов, а нашей истории как поезда, который отошел от станции и прибудет на другую, принадлежит идеологии или мифологии, а точнее вненаучной, внемифологической, внелогической ошибке. Это представление не попадает в точку, промахивается мимо нее. Точность трудна. Мы поэтому принимаем как освобождение новые факты, позволяющие не считать научно обязательным понимание истории как рельсов и поезда. Оно было слишком явно привязано к временным привычкам цивилизации.
9. Подведем предварительные итоги. Ускользание точки не только не говорит о ее несуществовании, но скорее наоборот, показывает, что она не ens rationis, не измышление разума. Статус точки: она есть и ее нет. Она в этом смысле взаимообратима с бытием. Сосредоточение не создание нашего сознания, как захваченность оно сознанию предшествует. Сосредоточенность как точечная собранность неостановимо переходит в собирание всего. Всё и точка в этом свете одно. Только предельная собранность способна дать настоящую точку. Вобравшая всё точка как целое неуловима, непространственна, не укладывается в систему координат, но может предшествовать ей как начало геометрии, она же начало времени (точечное настоящее).
Сосредоточение не значит сужение, ограничение, отбрасывание лишнего с целью остаться при одном. Абстрагирование как его привычно понимают — нечистая, неточная работа непонятного смысла и назначения. «Отбрасывание деталей» даст только увеличение масштаба, скажем, обеднение понятия, но никогда не точку. Здесь происходит то же что с делением линии. Линия для грубого беспорядочного взгляда кажется большой, а точка маленькой: разделим линию на два, потом еще на два, если надо еще и еще, и якобы получим точку или что-то вроде того. Против этой грязной операции, к сожалению слишком частой, Аристотель предупреждает, как мы видели, что точка не получается при делении линии и линия не получается суммированием точек. Нельзя сказать, что линия больше точки из-за несравнимости обеих. Но не будет неправильно, хотя и покажется странно сказать, что точка несоизмеримо, несоразмерно, т.е. бесконечно меньше линии и одновременно так же бесконечно больше линии.