Другое начало
Шрифт:
Дело в том, что линия образована движением точки и значит может быть другой, прошедшей иначе. Бессмысленно говорить, что линия одна, и не бессмысленно — что точка одна. Сосредоточение, собирание, дающее точку, имеет двойную направленность, одновременно отталкиваясь от всего и собираясь в укол, так что нельзя сказать, в каком одном направлении сначала действует собирание. Собирается что? Чем больше тем лучше, начиная неважно с чего и в конце концов охватывая всё. Собирается во что? Естественно, в нечто всё более собранное, сосредоточенное, в конечном счете в точку. Настоящее абстрагирование — это трудное избавление не от деталей, а от их ограничения. Точка не линия не потому что эти две фигуры можно сравнить между собой и убедиться в их неодинаковости. Разница между ними идет глубже. Сосредоточиваясь на линии, я вижу ее именно такой, при том что она могла быть и другой, длиннее, кривее. Линия подлежит смене аспекта. В другом аспекте это другая линия. Пусть линия на доске будет траекторией элементарной
Сосредоточение направлено, как собирание собранности, мы заметили, в оба полюса. Подобно точке, всё тоже не имеет аспектов, не будучи подвержено их смене. Казалось бы, на всё можно смотреть и так и по-другому, видеть в нем конечное или бесконечное целое ( «мир конечен или бесконечен»), расширяющееся или нет, имеющее смысл или не имеющее смысла. Пока люди так говорят и спрашивают, они еще не собраны, не сосредоточены полностью на целом и делают примерно то же, что делают, когда воображают, что можно взять точку и поместить ее на доске. Они помещают всё в воображаемое ими пространство. С математической точкой, о которой заранее условились, что она движется в воображаемой системе координат, такое можно делать. С воображаемым целым подобное тоже можно делать, приписывая ему предикаты. С самого начала оно включено в условную систему, ему придан образ или набор возможных образов, как правило, полученных приблизительно, не уточненных. Это так называемое «традиционное» целое справедливо растрепано постмодерном в его «критике метафизики», за которую постмодерн платит тем, что имеет дело только с якобы целым. С настоящим целым критические операции не пройдут. На то, как оно изъято из смены аспектов, ненавязчиво намекает слово. В целом звучит цельное, исцеленное, не страдающее. Как точка, так и целое не поддается определению, само определяя собою все, что отклоняется от него.
10. Это значит: ни определить, ни вообразить разницу между точкой и целым невозможно. Их генезис одинаковый: собирание, сосредоточение. Статус целого, как статус точки, невозможно наблюдать, но бессмысленно отрицать. Бессмысленно говорить, что собирания, концентрации, сосредоточения нет в природе и что точка — лишь условный конструкт. Нет причин не вернуться к пифагорейцам: в точке, настоящей, не евклидовой, не воображаемой, неуловимой, мы встречаемся с асимметрией как непарностью. В настоящей точке и в настоящем целом мы выходим из того, что доступно расчету, и повертываемся лицом к софии, отношением к которой может быть только философия — расположенность, исключающая распорядительность.
Именно потому, что мы не может отличить точку от целого, между ними располагается многозначительная дуга. Первое, что тут может прийти в голову — что точка маленькая, а целое большое, — так же грубо, как и сравнение точки с линией. Не задумываясь, мы принимаем за середину схожее с нашим телом, отсюда определяем малое и большое; малое оказывается незначительным, большое важным; слишком малое и слишком большое отгорожены от нас новоевропейским понятием предела.
Напряжение между точкой и целым создается явно непомерной разницей между ними при неспособности доказать, что собирание в точку происходит иначе чем собирание в целое. Уже говорилось о легком представлении, будто идя к точке мы отбрасываем части, а в целом их собираем. Интимная связь между точкой и целым замечена не только философией. Частная интерпретация этой связи — та гипотеза современной физики, что в инерционности всякого, в том числе элементарного тела присутствует весь фон, условно говоря, звездной массы.
Точка интересным образом повторяется в целом, и хотелось бы конечно уточнить, как именно. Но как после отказа от условленной евклидовой геометрии вглядевшись в точку мы теряем ее, так же мы теряем и целое, когда освобождаемся от грубой глобализации. К неопределимому inter est между точкой и целым сводится весь интерес, потому что в пространстве между ними располагается по-видимому всё. Неперечислимость этого всего соответствует неопределимости разницы, перед которой мы тут стоим.
11. Повтор, повторение как базовая структура обеспечивает собой познание. О знании как воспоминании можно говорить в широком смысле. Познание того, что мы видим, имеет структурой повторение. Возьмем для примера то, что имеет отношение к времени.
Повтор воспринимается как некая завершенность. Целое имеет исцеляющий характер. Смену аспектов в геометрии, в частности аспектов линии, затем треугольника и так далее, кардинал Николай Кузанский называл в своей онтологической математике претерпеваниями, passiones. Повторение возвращает, спасает из неостановимой смены аспектов, приостанавливая его в себе. Возвращение солнца к тому же самому положению на небе — важный феномен не только собирания года из разбросанной смены сезонов, но и, шире, зримо подаваемый знак, что собранность есть. Наше слово «год» имеет соответствия в латышском, в древне- и средненемецких, где слова с тем же корнем получают значения находить, попадать, подходить; мы говорим угодить. Разумеется, нет никаких известий о языке, которым пользовались в древних астрономических лабораториях, однако историки склоняются к тому, что они работали по принципу попадания луча в определенную точку размеченного экрана. Попаданием луча, например от восходящей звезды, через прорезь на экран, допустим перфорированный, мог с точностью до секунд определяться момент возвращения светила к положению, которое оно однажды занимало. Астрономическое происхождение слова «год» как попадания солнечного луча в одну и ту же точку на горизонтали (дневной круг) и вертикали (полугодовой цикл) мне кажется правдоподобным. Квантовые часы построены по тому же принципу возвращения так называемого скачка в микромире всегда к одной и той же величине. Обычные часы, основанные на постоянстве действия пружины или на инерции маятника, через это постоянство привязаны к свойствам вещества и через инерцию к всемирному тяготению.
В солнечных, квантовых, пружинных, маятниковых часах вселенная, ее вещество уловлены в их повторяемости. Повторяемость отыскивается, удовлетворенно, восторженно схватывается. Однако феномен повторяемости считывается не с эмпирически наблюдаемого. Год на год не приходится. При всей своей невероятной точности даже квантовые часы, более надежные чем астрономические, тоже не доходят «до точки». Обнаружению повторяемости в природе должно было предшествовать ожидание повторения, опыт точки и целого — точки как полной собранности и целого как собранности всей полноты. Ненаблюдаемость и, можно строго сказать, отсутствие точки и целого ничего не говорят против их первичности.
Счет греческого времени по олимпиадам был тоже привязкой к космическому повторению. Обегание(обскакивание на конях) вокруг поворотного столба и возвращение бегуна или всадника на стадионе было человеческим, земным ритуальным воссозданием небесного космического повторения. Поворот бегуна был тем же самым, одновременно культурным, мифологическим и научным, поворотом и повторением, что повторение пути небесным космическим телом. Но то и другое было только успокаивающим, гармонизирующим символом того повторения-возвращения, которое неуловимо происходит в точке.
Наблюдение о недостижимости точки позволяет решить вопрос, почему время привязано к космическому движению. Ключом служит понимание истории как повторения точки начала в целом как конце. Начало и конец отмечены одинаковой собранностью. Предельная собранность ускользает в настоящем. Прошлое не образуется суммированием бывших настоящих; оно вспоминается, когда собрано в точке настоящего. Будущим обеспечивается настоящее не в том смысле, что подается как на конвейере: будущее — обозначение интереса, неопределимой разницы между собранностью точки и собранностью целого.
Древняя астрономия была встраиванием общества в космическое повторение. В позднем неолите (III – II тысячелетия до н.э.) появляются постройки из громадных камней, мегалиты, места поклонения. Похоже, что в кромлехах (кром — круг, лех — камень), круговых каменных оградах, которые в свое время были частью всего сооружения, остальное было из дерева. Огромные каменные плиты образуют концентрические круги. Даже если это не было астрономической обсерваторией, все равно в той мере, в какой постройка была не чисто утилитарной, в круговой форме не мог не присутствовать космос. Строгость закона и порядка, возможно, прямо связывалась с точностью движения светил, примерно как в древнем Междуречье царь нуждался в жестком счете дней, чтобы налоги выплачивались с размеренностью движения звезд.