Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

Можно ли улучшить это положение? Рассмотрим случай, когда расстояние между источниками равно десяти длинам волн (фиг. 29.7), а разность фаз колебаний равна нулю. Это ближе к ситуации, описанной ранее,

когда мы экспериментировали с интервалами, равными нескольким длинам волн, а не малым

долям длины волны.

Фиг. 29.7. Распределение интен­сивности двух диполей, находя­щихся на расстоянии 10l друг от друга.

Здесь иная картина.

Если расстояние между источниками равно десяти длинам волн (мы выбираем более легкий случай, когда они находятся в фазе), то в западном и восточном направлениях интенсивность максимальна и равна 4. Если же сдвинуться на небольшой угол, разность фаз станет равной 180° и интенсивность обратится в нуль. Более строго: если мы проведем прямые от каждого осцил­лятора до точки

наблюдения и вычислим разность расстояний до осцилляторов D, причем D окажется равным l/2, то оба сигнала будут в противофазе и суммарный эффект равен нулю. Этому на­правлению отвечает первый нуль на фиг. 29.7 (масштаб на рисун­ке не выдержан, это, по существу, грубая схема). Это означает, что мы получаем узкий луч в нужном направлении; если же мы чуть сдвигаемся в сторону, интенсивность исчезает. Для прак­тических целей, к сожалению, такие передающие системы имеют существенный недостаток: при некотором угле расстояние D может стать равным l и тогда оба сигнала снова окажутся в фазе! В результате получается картина с чередующимися мак­симумами и минимумами, точь-в-точь как в гл. 28 для расстоя­ния между осцилляторами, равного 2,5l.

Как избавиться от всех лишних максимумов? Существует довольно интересный способ устранения нежелательных макси­мумов. Поместим между нашими двумя антеннами целый ряд других (фиг. 29.8). Пусть расстояние между крайними по-прежнему равно 10l, а через каждые 2l поставим по антенне и настроим все антенны на одну фазу. Всего у нас будет, таким образом, шесть антенн, и интенсивность в направлении запад — восток, конечно, сильно возрастет по сравнению с интенсивностью от одной антенны. Поле увеличится в шесть раз, а интенсивность, определяемая квадратом поля,— в трид­цать шесть раз. Поблизости от направления запад — восток, как и раньше, возникнет направление с нулевой интенсив­ностью, а дальше, там, где мы ожидали увидеть высокий мак­симум, появится всего лишь небольшой «горб». Попробуем разобраться, почему так происходит.

Фиг. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.

Причина появления максимума, казалось бы, по-прежнему существует, поскольку D может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилля­торами 1 и 6, отличаясь от них по фазе приблизительно на поло­вину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном на­правлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстоя­ние между соседними диполями равно 2 l, можно найти угол, для которого разность хода s лучей от соседних диполей в точ­ности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоя­нии между осцилляторами более одной длины волны очень ин­тересно и важно, но не для передачи радиоволн, а для дифракционных решеток.

§ 5. Математическое описание интерференции

Мы рассматривали излучение диполей с качественной точки зрения, теперь рассмотрим количественную картину. Найдем прежде всего суммарное поле от двух источников в самом общем случае, когда разность фаз а и силы осцилляторов a 1 и А 2 произвольны; для этого необходимо сложить два косинуса с одинаковой частотой, но разными фазами. Разность фаз находится весьма просто: она складывается из разности, возникаю­щей за счет неодинакового удаления точки наблюдения от обоих источников, и внутренней, заданной разности фаз колебаний. Выражаясь математически, нам необходимо сложить две волны: R=a[cos(wt+j 1 )+А 2 cos (wt+j 2 ). Как это сделать?

Каждый, вероятно, сумеет провести это сложение, но тем не менее проследим за ходом вычислений. Прежде всего, если мы разбираемся в математике и достаточно ловко управляемся с синусами и косинусами, эту задачу легко решить. Самый про­стой случай, когда амплитуда a1 равна А2 , и пусть обе они обозначаются через А. В этих условиях (назовем это тригоно­метрическим методом решения задачи) мы имеем

(29.9)

На уроках тригонометрии вы, вероятно, доказывали равенство

(29.10)

Если это нам известно, то мы немедленно получаем R:

(29.11)

Итак, мы снова получили синусоидальную волну, но с новой фазой и новой амплитудой. Вообще результат сложения двух синусоидальных волн есть синусоидальная волна с новой ам­плитудой AR, называемой результирующей амплитудой, и но­вой фазой jR, называемой результирующей фазой. В нашем частном случае результирующая амплитуда равна

(29.12)

а результирующая фаза есть арифметическое среднее обеих фаз. Таким образом, поставленная задача полностью решена. Предположим теперь, что мы забыли формулу сложения ко­синусов. Тогда можно применить другой метод решения — гео­метрический. Косинус, зависящий от wt, можно представить в виде горизонтальной проекции некоторого вращающегося век­тора. Пусть имеется вектор А1, вращающийся с течением вре­мени; длина его равна a1, a угол с осью абсцисс равен wt+j1. (Мы пока опустим слагаемое wt; как мы увидим, при выводе это не играет роли.) Сделаем моментальный снимок векторов в момент времени t=0, помня, что на самом деле вся схема вращается с угловой скоростью w (фиг. 29.9). Проекция a1 на ось абсцисс в точности равна a1cos (wt+j1). В момент времени t=0 вторая волна представляется вектором А2, длина которого равна a2, а его угол с осью абсцисс равен j2, причем он тоже вращается с течением времени.

Фиг. 29.9. Геометрический способ сложения двух косинусоидаль­ных волн.

Чертеж вращается со скоростью w против часовой стрелки.

Оба вектора вращаются с одинаковой угловой скоростью w, и их относительное распо­ложение неизменно. Вся система вращается жестко, подобно твердому телу.

Горизонтальная проекция А2 равна A2cos(wt + j2). Из векторного анализа известно, что при сложении двух векторов по правилу параллелограмма образуется новый, ре­зультирующий вектор АR, причем

x-компонента его есть сумма х-компонент слагающих векторов. Отсюда получаем решение нашей задачи. Легко проверить, что получается правильный ответ в нашем частном случае a12=А. Действительно, из фиг. 29.9 очевидно, что ARлежит посредине между a1 и А2 и составляет угол 1/2 (j2– j1) с каждым из них. Следовательно, AR = 2Аcos1/2 (j2– j1), что совпадает с прежним результатом. Кроме того, в случае А1А2фаза AR есть среднее от фаз a1 и А2. Для неравных A1и А2задача решается столь же просто. Мы можем назвать это геометрическим решением задачи.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря