Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:
Стоит сказать еще несколько слов по поводу полученных результатов. Ответьте, во-первых, почему мы видим облака? Откуда они берутся? Всем известно, что возникают они за счет конденсации водяных паров. Но водяные пары, конечно, находились в атмосфере еще до конденсации. Почему же мы их не видели? А вот после конденсации их прекрасно видно. Не были видны — и вдруг появились. Как видите, тайна происхождения облаков — это совсем не детский вопрос, вроде «Папа, откуда взялась вода?», и ее нужно объяснить.
Мы только что говорили, что каждый атом рассеивает свет,
Давайте посмотрим, что получится, если вместо одного атома взять скопление атомов, скажем два атома, расположенных очень близко друг к другу по сравнению с длиной волны. Вспомним, что размеры атомов порядка 1 Е, а длина волны света порядка 5000 Е, так что несколько атомов вполне могут образовать сгусток, где расстояние между ними будет много меньше длины волны. Под действием электрического поля оба атома будут колебаться совместно, как целое. Рассеиваемое электрическое поле окажется равным сумме двух полей с одинаковой фазой, т. е. удвоенной амплитуде одного атома, а энергия увеличится в четыре, а не в два раза по сравнению с энергией излучения от отдельного атома! Таким образом, сгустки атомов излучают или рассеивают больше энергии, чем столько же атомов по отдельности. Наше старое утверждение, что фазы двух атомов никак не связаны, основывалось на предположении о большой разности фаз двух атомов, что справедливо только когда расстояние между ними порядка нескольких длин волн или, когда они движутся. Если же атомы находятся совсем рядом, они излучают обязательно с одной фазой, и возникает усиливающая интерференция, что приводит к увеличению рассеяния.
Пусть в сгустке, крошечной капельке воды, содержится N атомов; тогда под действием электрического поля они будут двигаться, как и раньше, все вместе (влияние атомов друг на друга для нас несущественно, мы хотим только выяснить суть дела). Амплитуда рассеяния каждого атома одна и та же; следовательно, поле рассеянной волны оказывается в N раз больше.
Интенсивность рассеиваемого света увеличивается в N2 раз. Если бы атомы находились далеко друг от друга, мы получили бы увеличение в N раз по сравнению со случаем отдельного атома, а здесь возникает N2 раз! Иначе говоря, рассеяние капельками воды (по N молекул в каждой) в N раз больше рассеяния тех же атомов по отдельности. Таким образом, чем больше вода конденсируется, тем больше рассеяние. Может ли рассеяние расти до бесконечности? Нет, конечно! На каком же этапе наши рассуждения станут неверными? Ответ: когда водяная капля увеличится настолько, что размеры ее окажутся порядка длины волны, колебания атомов будут происходить с разными фазами, потому что расстояние между ними станет слишком большим. Таким образом, с увеличением размера капель рассеяние растет до тех пор, пока капли не станут порядка длины волны, а затем с ростом капель рассеяние увеличивается гораздо медленнее. Кроме того, голубой свет в рассеянной волне начинает исчезать, потому что для коротких волн предел роста рассеяния наступает раньше (у менее крупных капель), чем для длинных волн. Хотя каждый атом рассеивает короткие волны сильнее, чем длинные, капли с размерами больше длины волны интенсивнее рассеивают свет вблизи красного конца спектра, и с ростом капель цвет рассеянного излучения меняется с голубого на красный (становится более красным).
Это явление можно наглядно продемонстрировать. Нужно взять очень маленькие частички вещества, которые затем постепенно будут расти. Для этого воспользуемся раствором гипосульфита натрия в серной кислоте, в котором осаждаются крохотные зернышки серы. Когда сера начинает осаждаться, зернышки еще очень малы и рассеянный свет имеет синеватый оттенок. С ростом числа и величины частиц в осадке свет сначала становится более интенсивным, а затем приобретает беловатый оттенок. Кроме того, проходящие лучи теряют синюю составляющую. Именно поэтому закат бывает красным; солнечные лучи, прошедшие к нам через толщу атмосферы, успели рассеять голубой свет и приобрели оранжевую окраску.
Наконец, при рассеянии возникает еще одно важное явление, которое, по существу, относится к поляризации — теме следующей главы. Однако оно так интересно, что имеет смысл сказать о нем сейчас. Оказывается, что электрическое поле рассеянного света колеблется преимущественно в одном определенном направлении. Пусть электрическое поле в падающей волне колеблется в каком-то направлении, тогда осциллятор будет совершать свои вынужденные колебания в том же направлении. Если теперь мы будем смотреть под прямым углом к падающему лучу, то увидим поляризованный свет, т. е. свет, в котором электрическое поле колеблется только в одном направлении. Вообще говоря, атомы могут осциллировать в любом направлении, лежащем в плоскости, перпендикулярной падающему лучу, но, когда они движутся прямо к нам или от нас, мы их не видим. Таким образом, хотя электрическое поле в падающем луче осциллирует во всевозможных направлениях (в этом случае говорят о неполяризованном свете), свет, рассеивающийся под углом 90°, содержит колебания только в одном направлении (фиг. 32.3)!
Фиг. 32.3. Возникновение поляризации у рассеянного луча, направленного под прямым углом к падающему лучу.
Есть такое вещество, называемое поляроидом, через которое проходит только волна с электрическим полем, параллельным некоторой оси. С помощью поляроида можно заметить поляризацию и, в частности, показать, что свет, рассеянный нашим раствором гипосульфита, действительно сильно поляризован.
*Выпуск 2