Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:
Еще один пример погашения интерференции представляет собой сложение света не двух, а многих источников. В этом случае A2R равно квадрату суммы большого числа амплитуд (комплексных чисел), т. е. сумме квадратов плюс перекрестные члены от каждой пары. При определенных условиях перекрестные члены могут погаситься и интерференция исчезнет. Например, когда источники распределены в пространстве случайным образом, тогда разность фаз A2и А3хотя и постоянна, но значительно отличается от разности фаз A1 и А2и
Вот почему во многих случаях мы не замечаем эффекта интерференции, а полная интенсивность оказывается равной сумме интенсивностей всех источников.
§ 5. Рассеяние света
Приведенные выше примеры помогут нам понять одно явление, которое возникает в воздухе в результате неупорядоченного расположения атомов. В главе о показателе преломления мы говорили, что падающий свет вызывает излучение атомов. Электрическое поле падающего пучка раскачивает электроны вверх и вниз, и они, двигаясь с ускорением, начинают излучать. Это рассеянное излучение образует пучок света, движущийся в том же направлении, что и падающий луч, но отличающийся от него по фазе, благодаря чему и возникает показатель преломления.
Но что можно сказать об интенсивности рассеянного света в других направлениях? Если атомы очень правильно чередуются, образуя красивый геометрический узор, интенсивность во всех остальных направлениях равна нулю, потому что результат сложения множества векторов с меняющимися фазами сводится к нулю. Но если расположение атомов беспорядочное, интенсивность в любом направлении, как мы уже говорили, равна сумме интенсивностей от каждого атома в отдельности. Более того, атомы газа постоянно движутся, и разность фаз двух атомов, принимающая определенное значение в некоторый момент времени, в следующий момент уже изменится, поэтому при усреднении по времени исчезает каждый перекрестный член в отдельности. Следовательно, для определения интенсивности света, рассеянного газом, можно взять рассеяние на одном атоме и умножить интенсивность на число атомов.
Как уже отмечалось, голубой цвет неба объясняется именно рассеянием света в воздухе. Солнечный свет проходит сквозь воздух, и, когда мы смотрим в сторону от Солнца, например, перпендикулярно падающему лучу, мы видим свет голубой окраски; попробуем теперь подсчитать интенсивность рассеянного света и понять, почему он голубой.
Падающий луч света с напряженностью электрического поля Е = Е0еivt в точке расположения атома, как известно, заставляет электрон колебаться вверх и вниз (фиг. 32.2). С помощью уравнения (23.8) находим амплитуду колебаний
(32.15)
В принципе можно учесть затухание и ввести сумму по частотам, считая, что атом действует как совокупность осцилляторов с разными частотами. Однако для простоты ограничимся случаем одного осциллятора и пренебрежем затуханием. Тогда выражение для амплитуды принимает вид, которым мы уже пользовались при вычислении показателя преломления:
(32.16)
Из этой формулы для
Однако, чтобы сэкономить время, вычислим сначала полную интенсивность рассеяния во всех направлениях. Полную энергию, рассеиваемую атомом за 1 сек во всех направлениях, можно получить из формулы (32.7). После перегруппировки
(32.17)
Фиг. 32.2. Луч, падающий на атом, заставляет заряды (электроны) атома колебаться. Движущиеся электроны в свою очередь излучают во все стороны.
Мы приводим результат в такой форме потому, что она удобна для запоминания: прежде всего, рассеиваемая энергия пропорциональна квадрату падающего поля. Что это означает? Очевидно, квадрат поля пропорционален энергии падающего пучка, проходящей за 1 сек. (В самом деле, энергия, падающая на 1 м2 за 1 сек, равна произведению e0с и среднего квадрата электрического поля <E2>; если максимальное значение Е есть Е0 то <E2> = 1/2E02.) Другими словами, рассеиваемая энергия пропорциональна плотности падающей энергии; чем сильнее солнечный свет, тем ярче кажется небо.
А какая доля падающего света рассеивается электроном? Вообразим мишень с площадью а, помещенную на пути луча (не настоящую мишень, сделанную из какого-то вещества, потому что она приведет к дифракции света и т. п., а воображаемую мишень, нарисованную в пространстве). Количество энергии, проходящее через поверхность 0, пропорционально падающей интенсивности и площади мишени:
(32.18)
А теперь давайте условимся: полное количество энергии, рассеиваемое атомом, мы приравняем энергии падающего пучка, проходящей через некоторую площадь; указав величину площади, мы тем самым определяем рассеиваемую энергию. В такой форме ответ не зависит от интенсивности падающего пучка; он выражает отношение рассеиваемой энергии к энергии, падающей на 1 м2. Другими словами,
Смысл этой площади заключается в том, что, если бы вся попадающая на нее энергия отбрасывалась в сторону, она рассеивала бы столько энергии, сколько рассеивает атом.
Эта площадь называется эффективным сечением рассеяния. Понятие эффективного сечения используется всегда, когда эффект пропорционален интенсивности падающего пучка. В таких случаях количественный выход эффекта задается площадью эффективной области, выхватывающей из пучка такую часть, чтобы она равнялась выходу. Это ни в коем случае не означает, что наш осциллятор на самом деле занимает подобную площадь. Если бы свободный электрон просто качался взад и вперед, ему бы не соответствовала никакая площадь. Это лишь способ выражения результата через определенную величину; мы указываем площадь, на которую должен упасть пучок, чтобы получилась известная энергия рассеяния. Итак, в нашем случае
(32.19)
(s — рассеяние).
Рассмотрим несколько примеров. Прежде всего, когда собственная частота очень мала или электрон вообще свободен, что соответствует w0= 0, частота w выпадает и сечение s становится константой. В этом пределе сечение носит название томпсоновского сечения рассеяния. Оно равно площади квадратика со стороной около 10– 15 м, т. е. площади 10– 30 м2, а это очень мало!
С другой стороны, при рассеянии света в воздухе собственные частоты осцилляторов, как мы уже говорили, больше частот обычного света. Отсюда следует, что величиной w2 в знаменателе можно пренебречь и сечение оказывается пропорциональным четвертой степени частоты. Значит, свет с частотой, в два раза большей, рассеивается в шестнадцать раз интенсивнее, а это уже вполне ощутимая разница. Таким образом, голубой свет, частота которого примерно вдвое выше частоты света у красного конца спектра, рассеивается значительно интенсивнее, чем красный свет. И, взглянув на небо, мы видим только изумительную синеву!