Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

А что нужно взять в качестве энергии W осциллятора? Кине­тическая энергия осциллятора равна 1/2mv2, а средняя кинети­ческая энергия равна mш2x20/4. Но мы помним, что полная энер­гия осциллятора равна средней кинетической плюс средняя потенциальная, причем обе они для осциллятора равны; поэтому полная энергия равна

(32.9)

Какую частоту следует подставить в наши формулы? Мы возь­мем собственную частоту w0, потому что практически это и есть частота излучения атома, а вместо m подставим me . После ряда сокращений эта формула приводится к виду

(32.10)

(Для большей ясности и из соображений близости к исторически принятой форме мы

ввели величину е2 = q2e/4pe0 и записали 2p/l вместо w0/с.) Поскольку величина Q безразмерна, множи­тель е2/mес2, зависящий только от массы и заряда электрона и выражающий его внутренние свойства, обязан иметь размер­ность длины. Он был назван классическим радиусом электрона, потому что в старых моделях электрона радиационное сопротив­ление пытались объяснить действием одной части электрона на другие его части, для чего размеры электрона приходилось вы­бирать порядка e2/mec2. Но эта величина потеряла свой прежний смысл, и никто теперь не считает, что электрон имеет такой

радиус. Численное значение классического радиуса электрона следующее:

(32.11)

Вычислим теперь значение Q для атома, излучающего ви­димый свет, например для атома натрия. Длина волны излу­чения натрия равна примерно 6000 Е и находится в желтой части спектра; эта величина довольно типична. Отсюда

(32.12)

т. е. для атомов Q порядка 108. Это значит, что атомный осциллятор колеблется 108 рад, или примерно 107 периодов, прежде чем его энергия уменьшится в 1раз. Частота колебаний света v = с/l при длине волны 6000 Е составляет 1015 гц, а, следовательно, время жизни, т. е. время, за которое энер­гия уменьшится в Не раз, есть величина порядка 10– 8сек.

Примерно за такое же время высвечиваются свободные атомы в обычных условиях. Проведенная оценка справедлива только для атомов в пустом пространстве, не подверженных никаким внешним воздействиям. Если электрон находится в твердом теле, он сталкивается с другими атомами и электро­нами, и тогда возникает добавочное сопротивление и затухание будет другим.

Величина эффективного сопротивления у, определяющая сопротивление осциллятора, может быть найдена из соотноше­ния 1/Q=g/wo; вспомним, что именно y определяет ширину резо­нансной кривой (см. фиг. 23.2) . Итак, мы вычислили шири­ны спектральных линий для свободно излучающих атомов! Из равенства l=2pc/w получаем

§ 4. Независимые источники

Прежде чем перейти ко второй теме этой главы — рассея­нию света, обсудим частный случай явления интерференции, который мы до сих пор не рассматривали. Речь пойдет о таком случае, когда интерференция не возникает. Пусть имеются два источника S1 и S2 с амплитудами поля a1 и A2 . Излучение регистрируется в некоторой точке, в которую оба луча приходят с фазами j1 и j2 (фазы зависят от истинного момента излучения и времени запаздывания, являющегося функцией точки на­блюдения).

Наблюдаемая интенсивность излучения получается сложе­нием двух комплексных векторов с модулями a1 и A2 и фазами j1 и j2 (как в гл. 30) и возведением в квадрат; таким образом, энергия пропорциональна

Если бы не было перекрестного члена 2A1A2cos(j1– j2), пол­ная энергия в данном направлении была бы равна сумме энер­гий A12+A22; излучаемых по отдельности каждым источником, что соответствует нашим обычным представлениям. Иначе говоря, интенсивность света, падающего на предмет от двух источников, совпала бы с суммой интенсивностей обоих источ­ников. С другой стороны, если оставить перекрестный член, суммы интенсивностей не получится, потому что возникнет ин­терференция. В тех случаях, когда перекрестный член роли не играет, интерференция, казалось бы, отсутствует. Фактически же она возникает всегда, но подчас ее не удается наблюдать.

Приведем несколько примеров. Пусть два источника нахо­дятся друг от друга на расстоянии 7 000 000 000 длин волн, что, в общем, вполне осуществимо. Тогда в некотором фиксиро­ванном направлении разность фаз принимает вполне определен­ное значение. Но если сдвинуться от этого направления хоть на волосок, скажем на несколько длин волн (совсем пустячное расстояние: зрачок нашего глаза настолько велик, что действие лучей можно усреднять на расстояниях, много больших длины волны), то разность фаз станет другой и значение косинуса резко изменится. При вычислении средней интенсивности в ма­ленькой области пространства косинус в точках этой области будет все время колебаться — плюс, минус, плюс, минус — и при усреднении даст нуль.

Итак, усреднение по области, в которой фаза быстро меня­ется от точки к точке, обращает интерференционный член в нуль.

Другой пример. Предположим, что два источника колеб­лются и излучают радиоволны независимо друг от друга, т. е. они представляют собой не один осциллятор, питающийся от двух проводов (благодаря чему разность фаз остается постоян­ной), а именно два независимых источника. И пусть источники не настроены точно на одну и ту же частоту (равенства частот очень трудно достигнуть, если не соединять источники в одной цепи). Именно при этих условиях мы и будем называть источ­ники независимыми. Естественно, что из-за сдвига по частоте фазы источников будут различаться, даже если вначале они и совпадали: одна из фаз начнет опережать другую и очень скоро источники окажутся в противофазе, а при дальнейшем опере­жении фазы снова сравняются и т. д. Разность фаз источников будет, таким образом, дрейфовать со временем, но при измере­ниях в течение больших промежутков времени приборы не смо­гут уследить за ними, так как подъемы и спады интенсивности, похожие на «биения» звука, происходят слишком быстро. Мы должны усреднить по промежутку времени наблюдения, но при этом интерференционный член снова выпадает.

Другими словами, при усреднении по разности фаз интерфе­ренционный член обращается в нуль!

Имеется много книг по физике, в которых утверждается, что два различных источника света никогда не интерферируют. Это утверждение не отражает физического закона, а просто характеризует ту чувствительность экспериментальной техники, кото­рая существовала к моменту написания книги. В источнике же света происходит следующее: сначала излучает один атом, затем другой и т. д. Как мы показали выше, атомы излучают последо­вательность волн за время около 10– 8 сек; через 10– 8 сек какой-то атом высвечивается, его место занимает другой, затем третий и т. д. Поэтому фаза может оставаться постоянной примерно только в течение 10– 8 сек. При усреднении за промежутки вре­мени, много большие 10– 8 сек, интерференционный член от двух источников выпадает, так как фазы источников за это время много раз изменятся. Световые ячейки Керра позволяют реги­стрировать свет с очень большой скоростью, и с их помощью удалось показать, что интерференционный член меняется за время порядка 10– 8 сек. Но большинство приборов не может регистрировать свет в столь малые интервалы времени и, есте­ственно, не обнаруживает интерференции. Для глаза время усреднения — порядка 1/10 сек, поэтому увидеть интерферен­цию обычных источников совершенно невозможно.

Недавно удалось создать источники света, в которых атомы излучают одновременно, и поэтому можно обойти эффект усред­нения. Принцип устройства подобных источников весьма сло­жен, его можно понять, только зная законы квантовой меха­ники. Называются эти источники лазерами. Частота интерфе­ренции испущенного лазером света, т. е. время, в течение кото­рого фаза остается постоянной, много больше 10– 8 сек. Оно может быть равно сотой, десятой доле секунды и даже целой секунде; с помощью обычных световых ячеек можно определить частоту интерференции между двумя лазерами. Легко также заметить биения при сложении света от двух лазеров. Вне вся­кого сомнения, скоро станет возможно получать столь медлен­ные биения, что, направив на стенку свет от двух лазеров, можно будет увидеть их невооруженным глазом в виде периодических ослаблений и увеличений яркости пятна!

Поделиться:
Популярные книги

Академия проклятий. Книги 1 - 7

Звездная Елена
Академия Проклятий
Фантастика:
фэнтези
8.98
рейтинг книги
Академия проклятий. Книги 1 - 7

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Восход. Солнцев. Книга IV

Скабер Артемий
4. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IV

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Я – Орк. Том 3

Лисицин Евгений
3. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Я – Орк. Том 3

Авиатор: назад в СССР 14

Дорин Михаил
14. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 14

Провинциал. Книга 4

Лопарев Игорь Викторович
4. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 4