Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:
Фиг. 31.3. Построение вектора поля прошедшей через материал волны при некоторых значениях t и z.
Тогда можно записать
(31.7)
Подставляя это равенство в (31 6), получаем
(31.8)
Первый член в этом выражении есть просто поле источника, а второй следует приравнять Еа — полю, создаваемому осциллирующими зарядами пластинки справа
· · ·
Смысл сделанных преобразований легче всего понять с помощью диаграммы комплексных чисел (см. фиг. 31.3). Отложим сперва Es (z и t выбраны на рисунке такими, что Es лежит на действительной оси, но это не обязательно). Задержка при прохождении пластинки приводит к запаздыванию фазы Es, т. е. поворачивает Es на отрицательный угол. Это все равно, что добавить малый вектор Еа, направленный почти под прямым углом к Es. Именно такой смысл имеет множитель (-i) во втором члене (31.8). Он означает, что при действительном Es величина Еа отрицательная и мнимая, а в общем случае Es и Ёа образуют прямой угол.
§ 2. Поле, излучаемое средой
Мы должны теперь выяснить, имеет ли поле осциллирующих зарядов в пластинке тот же вид, что и поле Еа во втором члене (31.8). Если это так, то тем самым мы найдем и показатель преломления n [поскольку n — единственный фактор в (31.8), не выражающийся через фундаментальные величины]. Вернемся теперь к вычислению поля Еа , создаваемого зарядами пластинки. (Для удобства мы выписали в табл. 31.1 обозначения, которыми мы уже пользовались, и те, которые нам понадобятся в дальнейшем.)
Таблица 31.1 обозначения которыми мы пользуемся
ПРИ ВЫЧИСЛЕНИИ _______
Es поле, создаваемое источником
Еа поле, создаваемое зарядами пластинки
Dz толщина пластинки
z расстояние по нормали к пластинке
n показатель преломления
w частота (угловая) излучения
N число зарядов в единице объема пластинки
h число зарядов на единицу площади пластинки
qе заряд электрона
m масса электрона
w0 резонансная частота электрона, связанного в атоме
Если источник S (на фиг. 31.1) находится слева на достаточно большом расстоянии, то поле Es имеет одинаковую фазу по всей длине пластинки, и вблизи пластинки его можно записать в виде
(31.9)
На самой пластинке в точке z=0 мы имеем
(31.10)
Это электрическое поле воздействует на каждый электрон в атоме, и они под действием электрической силы qE будут колебаться вверх и вниз (если e0 направлено вертикально). Чтобы найти характер движения электронов, представим атомы в виде маленьких осцилляторов, т. е. пусть электроны упруго соединены с атомом; это значит, что смещение электронов из нормального положения под действием силы пропорционально величине силы.
Если вы слышали о модели атома, в которой электроны вращаются по орбите вокруг ядра, то эта модель атома вам покажется просто смешной. Но это лишь упрощенная модель. Точная теория атома, основанная на квантовой
(31.11)
(здесь F — внешняя сила).
В нашем случае внешняя сила создается электрическим полем волны источника, поэтому можно написать
(31.12)
где qe — заряд электрона, а в качестве ES мы взяли значение ЕS = Е0еiwt из уравнения (31.10). Уравнение движения электрона приобретает вид
(31.13)
Решение этого уравнения, найденное нами раньше, выглядит следующим образом:
(31.15)
откуда
(31.16)
Мы нашли то, что хотели,— движение электронов в пластинке. Оно одинаково для всех электронов, и только среднее положение («нуль» движения) у каждого электрона свое.
Теперь мы в состоянии определить поле Еа , создаваемое атомами в точке Р, поскольку поле заряженной плоскости было найдено еще раньше (в конце гл. 30). Обращаясь к уравнению (30.19), мы видим, что поле Еа в точке Р есть скорость заряда, запаздывающая по времени на величину z/c, умноженная на отрицательную константу. Дифференцируя х из (31.16), получаем скорость и, введя запаздывание [или же просто подставляя х0 из (31.15) в (30.18)], приходим к формуле
(31.17)
Как и следовало ожидать, вынужденное колебание электронов привело к новой волне, распространяющейся вправо (на это указывает множитель ехр[iw(t-z/c)]); амплитуда волны пропорциональна числу атомов на единице площади пластинки (множитель h), а также амплитуде поля источника (Е0). Кроме того, возникают и другие величины, зависящие от свойств атомов (qe , m , w0).
Самый важный момент, однако, заключается в том, что формула (31.17) для Еa очень похожа на выражение Еа в (31.8), полученное нами с помощью введения запаздывания в среде с показателем преломления n. Оба выражения совпадают, если положить
(31.18)
Заметьте, что обе стороны этого равенства пропорциональны Dz, поскольку h — число атомов на единицу площади — равно NDz, где N — число атомов на единицу объема пластинки. Подставляя NDz вместо hи сокращая на Dz, получаем наш основной результат — формулу для показателя преломления, выраженную через константы, зависящие от свойств атомов, и частоту света:
(31.19)