Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

dsinq = ml. (30.6)

Это соотношение очень похоже на формулу (30.5). Однако там было ndsinq=l.Разница в том, что здесь нужно взять каж­дый отдельный источник и выяснить, что для него означает условие ndsinq=ml; угол q здесь таков, что разность хода d l. Другими словами, волны, идущие от источников, раз­личаются по фазе на величину, кратную 360°, и, следовательно, все находятся в фазе. Поэтому при сложении волн возникает столь же высокий максимум, как и в рассмотренном ранее слу­чае т =0. Побочные максимумы и весь ход интенсивности здесь такие же, как в случае j =0. Таким образом, наша система посы­лает пучки лучей в разных

направлениях, причем каждый пу­чок имеет высокий центральный максимум и ряд слабых боко­вых. Главные (центральные) максимумы в зависимости от вели­чины т называются максимумами нулевого, первого и т. д. порядков; т называют порядком максимума.

Обратите внимание на такой факт: если d меньше l, то фор­мула (30.6) имеет единственное решение при т =0. Поэтому для малого расстояния между источниками возникает один-един­ственный пучок, сконцентрированный около q=0. (Разумеется, есть еще пучок в обратном направлении.) Чтобы получить мак­симумы других порядков, расстояние d должно быть больше одной длины волны.

§ 2. Дифракционная решетка

На практике равенство фаз осцилляторов или антенн дости­гается с помощью проводов и всяких специальных устройств. Возникает вопрос, можно ли и как создать подобную систему для света. Сейчас мы еще не умеем делать маленькие радиостан­ции оптической частоты в буквальном смысле слова, соединять их крохотными проволочками и устанавливать для всех них одинаковые фазы. Однако есть другой очень простой способ, позволяющий добиться этой цели.

Предположим, у нас имеется большое количество парал­лельных проводов, отстоящих друг от друга на расстоянии d, и источник радиоволн, расположенный очень далеко, практи­чески на бесконечности. Этот источник создает электрическое поле у каждой из проволочек с одной и той же фазой, (Можно взять и объемную систему проводов, но мы ограничимся плоской системой.) Тогда внешнее электрическое поле будет двигать электроны взад и вперед в каждой проволочке, в результате они становятся новыми излучателями. Такое явление называется рассеянием: свет от некоторого источника вызывает движение электронов в среде, а оно в свою очередь генерирует собствен­ные волны. Поэтому достаточно взять ряд проволок на равном расстоянии друг от друга, подействовать на них радиоволнами от удаленного источника, и получается нужная нам система без всяких специальных контуров и т. п. Если лучи падают по нор­мали к плоскости проводов, фазы колебаний будут одинаковыми и возникнет та картина, о которой говорилось выше. Так, при расстоянии между проволочками, превышающем длину вол­ны, максимальная интенсивность рассеяния получается в на­правлении нормали и в других направлениях, определяемых формулой (30.6.).

Точно такое же устройство годится и для света! Только вместо проволок берут стеклянную пластинку и наносят на нее ряд штрихов так, чтобы каждый из них рассеивал свет иначе, чем остальная поверхность пластинки. Если затем направить на пластинку пучок света, то каждый штрих станет источником, а если расстояние между штрихами будет достаточно мало, но не меньше одной длины волны (практически таких малых рас­стояний все равно невозможно добиться), возникает удивитель­ное явление: лучи идут через пластинку не только по прямой, но и под конечным углом к нормали, зависящим от расстояния между штрихами! Устройства такого типа действительно суще­ствуют и широко используются, их называют дифракционными решетками.

Одна из разновидностей дифракционных решеток представ­ляет собой обычную стеклянную пластинку, прозрачную и бес­цветную, с нацарапанными на ней штрихами. Число штрихов на 1 мм зачастую достигает нескольких сотен, а расстояние между ними выдерживается с большой точностью. Действие такой решетки можно наблюдать, посылая сквозь нее с помощью про­ектора узкую вертикальную полоску света (изображение щели) на экран. Помещая решетку на пути света так, чтобы штрихи были расположены вертикально, мы увидим на экране ту же самую полоску света, но по сторонам от нее, кроме того, будут и другие полосы, окрашенные в разные цвета. Разумеется, мы получили не что иное, как уширенное изображение щели; угол 6 в (30.6) зависит от l, и разная окраска света, как мы знаем, соответствует разным частотам и разным длинам волн. Самой большой видимой длиной волны обладает красный свет; в силу условия dsinq=lему соответствует наибольшее q. И мы дей­ствительно обнаруживаем, что на экране красная полоса лежит дальше всех от центра изображения! С другой стороны должна быть такая же полоса; и в самом деле, мы видим на экране вторую полосу. Выражение (30.6) имеет еще одно решение с т =2. На соответствующем ему месте на экране видно какое-то рас­плывчатое слабое пятно, а дальше в сторону чуть заметен еще целый ряд слабых полосок.

Только что мы сказали, что максимумы всех порядков долж­ны иметь одинаковую интенсивность, а у нас интенсивность получается разная, и, более того, правый и левый максимумы первого порядка отличаются по своей яркости! Причина здесь кроется в том, что решетки изготовляются особым способом, чтобы как раз и получался подобный эффект. Как это делается? Если бы дифракционные решетки имели бесконечно тонкие штри­хи, расположенные на строго равном расстоянии друг от друга, то интенсивности максимумов всех порядков были бы одинако­вы. Но фактически, хотя мы пока разобрали только простейший случай, мы могли бы также взять систему, состоящую из пар антенн, причем в каждой паре установили бы определенную раз­ность фаз и интенсивности. Тогда можно было бы получить раз­ную интенсивность у максимумов разных порядков. На дифрак­ционную решетку часто наносят не ровные, а пилообразные штрихи. Специально подбирая форму «зубцов», можно увели­чить интенсивность спектра данного порядка по отношению к остальным. В практической работе с решетками желательно иметь максимальную яркость в одном из порядков. Мы отло­жим пока весьма сложное объяснение этих фактов, скажем только, что такие решетки оказываются гораздо более полез­ными в применениях.

До сих пор мы рассматривали случай, когда фазы всех источ­ников равны. Однако полученная нами формула (30.3) годится также и тогда, когда сдвиг фаз j каждого источника по срав­нению с предыдущим постоянен и равен а. Это означает, что антенны должны быть соединены по схеме, обеспечивающей небольшой сдвиг фазы между ними. Можно ли создать подобное устройство для света? Да, и очень просто. Пусть источник света находится на бесконечности и свет падает на решетку под не­которым углом, равным qвх (фиг. 30.4); рассмотрим рассеянный пучок света, выходящий под углом qВЫХ (qвых — это наш старый угол q, а qвх нужен для создания разности фаз у источников).

Фиг. 30.4. Разность хода двух лучей, отраженных соседними ли­ниями решетки, равна

dsinqвых — dsinqвх.

Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, по­падающего на два соседних штриха, есть a = - dsinqВХ/l. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:

(30.7)

Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что j должно быть числом, кратным 2p. Здесь следует отметить несколько интересных моментов.

Прежде всего, рассмотрим весьма интересный случай, соот­ветствующий m=0; когда d меньше l, тогда m=0и других ре­шений не возникает. Тогда получаем sinqвх = sinqвых,

т. е. рассеянный луч выходит в том же направлении, что и перво­начальный луч, падающий на дифракционную решетку. Но не следует думать, что свет просто «проходит насквозь». Мы ведь говорим о других лучах. Свет, проходящий насквозь, идет от первоначального источника, а мы имеем в виду свет, возникающий при рассеянии. Получается так, что рассеянный пу­чок света идет в том же направлении, что и первоначальный; более того, оба пучка могут интерферировать друг с другом, о чем мы расскажем в последующих главах.

В нашем случае имеется еще одно возможное решение. При заданном qвх угол qвых может быть равен дополнительному к qвх углу (p-qвх). Таким образом, кроме луча в направлении падающего пучка света, возникает еще один луч. Легко заме­тить, что его направление подчиняется правилу: угол падения равен углу рассеяния. Этот луч мы назовем отраженным.

Так мы подходим к пониманию основного механизма процес­са отражения: падающий свет возбуждает движение атомов отражающего тела, а оно в свою очередь генерирует новую волну, и одно из направлений рассеянной волны (единственное для расстояния между рассеивателями, малого по сравнению с длиной волны) таково, что угол падения луча света равен углу, под которым выходит отраженный луч!

Поделиться:
Популярные книги

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Чехов книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
попаданцы
альтернативная история
аниме
6.00
рейтинг книги
Чехов книга 3

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Приручитель женщин-монстров. Том 8

Дорничев Дмитрий
8. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 8

Сиротка 4

Первухин Андрей Евгеньевич
4. Сиротка
Фантастика:
фэнтези
попаданцы
6.00
рейтинг книги
Сиротка 4

Виконт. Книга 3. Знамена Легиона

Юллем Евгений
3. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Виконт. Книга 3. Знамена Легиона

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Темный Патриарх Светлого Рода

Лисицин Евгений
1. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Кодекс Крови. Книга ХII

Борзых М.
12. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Крови. Книга ХII

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Темный Патриарх Светлого Рода 5

Лисицин Евгений
5. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 5

Возвышение Меркурия. Книга 8

Кронос Александр
8. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 8