Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

(29.1)

где a(t-r/с) — ускорение в момент времени (t-r/с), или запаздывающее ускорение.

Интересно нарисовать картину распреде­ления поля в разных случаях. Наиболее характерный множитель в формуле (29.1) — это a (t-r/с);чтобы его понять, возьмем простейший случай q = 90° и изобразим поле на графике.

Фиг. 29.1. Напряженность поля Е, создаваемая положительным зарядом с запаздывающим ускорением а'.

Фиг. 29.2.

Ускорение некоторого заряда как функция времени.

Раньше мы были заняты вопро­сом, как ведет себя поле в данной фиксированной точке пространства с течением времени. Теперь посмотрим, как выглядит поле в разных точках пространства в один и тот же момент времени. Иначе говоря, нам нужен «моментальный сни­мок» поля, из которого будет ясно, каково оно в разных местах. Разумеется, картина распределения поля зависит от ускорения заряда. Зададим характер движения заряда: пусть сначала он покоится, затем внезапно начнет определенным образом уско­ряться (как показано на фиг. 29.2) и, наконец, остановится. Затем, чуть позже, измерим поле в разных точках пространства. Мы можем утверждать, что поле будет иметь вид, приведенный на фиг. 29.3. В самом деле, поле в каждой точке определяется ускорением заряда в предыдущий момент времени, причем под словом «предыдущий» понимается rсекунд назад. Чем дальше точка, тем более ранним моментом времени определяется для нее ускорение. Поэтому кривая на фиг. 29.3 в некотором смысле есть «обращенный» во времени график ускорения; время и расстояние отличаются постоянным множителем c, который часто выбирается равным единице. Этот факт легко заметить и в математической записи a(t-r/с). Ясно, что добав­ка интервала времени At и вычитание отрезка пути Dr=-cDt дают одну и ту же величину a(t-r/с).

Другими словами, увеличив время на Dt, можно восста­новить значение a(t-r/с) добавлением отрезка Dr= сDt, т. е. поле распространяется со временем как волна, уходящая от источника. Вот почему иногда говорят, что свет движется как волна. Можно также сказать, что поле запаздывает во времени, или иначе, что поле распространяется вширь с течением вре­мени.

Фиг. 29.3. Электрическое поле как функция положения точки на­блюдения спустя некоторый про­межуток времени.

Множителем 1/r пренебрегаем.

Особый интерес представляет случай периодических коле­баний заряда q. В опыте, рассмотренном в гл. 28, смещение за­рядов x в момент t равнялось некоторой константе х0, амплитуде колебаний, умноженной на coswt. Ускорение в этом случае равно

(29.2)

Отвлечемся пока от угла q и постоянных и посмотрим, как ведет себя Е (29.3) в зависимости от времени или координат.

§ 2. Энергия излучения

Как мы уже говорили, в любой момент времени и в любой точке пространства напряженность поля меняется обратно пропорционально расстоянию r. Следует заметить, что энергия, несомая волной, и любые энергетические характеристики элек­трического поля пропорциональны квадрату поля. Пусть, на­пример, заряд или осциллятор находится в электрическом поле и под влиянием поля начинает двигаться. Для линейного осцил­лятора смещение, ускорение и скорость, возникающие под дей­ствием поля, прямо пропорциональны величине поля. Поэтому кинетическая энергия заряда пропорциональна квадрату поля. Мы примем, что энергия, которую поле может передать какой-либо системе, пропорциональна квадрату поля.

Отсюда следует, что энергия, получаемая в данном месте от источника поля, уменьшается по мере удаления от источника, точнее, она падает обратно пропорционально квадрату расстоя­ния. Существует очень простая интерпретация этого факта: соберем энергию волны, попадающую в конус с вершиной в ис­точнике, сначала на расстоянии r1 (фиг. 29.4), а затем на расстоя­нии r2; тогда количество энергии, падающее на единичную пло­щадку, обратно пропорционально квадрату расстояния r, а площадь поверхности внутри конуса растет прямо пропорцио­нально квадрату расстояния r от поверхности до вершины ко­нуса. Таким образом, на каком бы расстоянии от вершины конуса мы ни находились, энергия, проходящая внутри конуса, одна и та же! В частности, если окружить источник со всех сто­рон поглощающими осцилляторами, то полное количество энер­гии, поступающее в них от волны, будет постоянным, незави­симо от расстояния до источника.

Фиг. 29.4. Количество энергии, протекающей внутри конуса OABCD, не зависит от расстоя­ния r, на котором оно измеряется.

Закон спадания поля Е как 1/r эквивалентен утверждению, что имеется поток энергии, ко­торый нигде не теряется; при этом энергия распространяется на все большие и большие области пространства. Таким образом, заряд, колеблясь, безвозвратно теряет энергию, уходящую все дальше и дальше. Заряд не может вернуть излученную энергию с тех расстояний, где применимо наше рассмотрение; для доста­точно больших расстояний от источника вся излученная энер­гия уходит прочь. Конечно, энергия не исчезает бесследно и ее можно поглотить с помощью других систем. Потери энергии на излучение мы будем изучать в гл. 32.

Рассмотрим теперь более подробно волны вида (29.3) как функции времени в данном месте и как функции расстояния в данный момент времени. Как и раньше, будем отвлекаться от постоянных множителей и множителя 1/r.

§ 3. Синусоидальные волны.

Зафиксируем вначале r и рассмотрим поле как функцию времени. Получается функция, которая осциллирует с угловой частотой w. Угловую частоту со можно определить как скорость изменения фазы со временем (радианы в секунду). Эта величина нам уже знакома. Период есть время одного колебания, одного полного цикла; он равен 2p/w, так как произведение w и периода есть полный период косинуса.

Введем новую величину, которая очень часто используется в физике. Она возникает в другой ситуации, когда t фиксиро­вано и волна рассматривается как функция расстояния r. Легко увидеть, что как функция r волна (29.3) тоже осциллирует. Если отвлечься от множителя 1/r, то мы видим, что Е тоже осцилли­рует, когда мы меняем положение. Тогда по аналогии с w введем

так называемое волновое число и обозначим его через k. Оно опре­деляется как скорость изменения фазы с расстоянием (радианы на метр). Время при таком изменении остается фиксированным. Роль периода здесь играет другая величина, ее можно было бы назвать периодом в пространстве, однако ее обычное назва­ние — длина волны, а обозначается она буквой l. Длина волны есть расстояние, на котором колебание поля совершает один полный цикл. Легко видеть, что длина волны равна 2p/k,потому что k, умноженное на длину волны, равно полному периоду ко­синуса. Итак, соотношение kl=2p полностью аналогично

wt0=2p.

В нашем конкретном случае между частотой и длиной волны имеется определенная связь, однако приведенные выше опре­деления k и w носят совершенно общий характер и применимы также в тех физических условиях, когда никакого соотношения между этими величинами нет. Для рассматриваемой нами волны скорость изменения фазы с расстоянием найти легко. В самом деле, запишем выражение для фазы j=w(t-r/с) и возьмем частную производную по r

(29.4)

Поделиться:
Популярные книги

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Король Масок. Том 2

Романовский Борис Владимирович
2. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 2

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

На границе империй. Том 10. Часть 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 3

Возвышение Меркурия. Книга 13

Кронос Александр
13. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 13

Тайный наследник для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.20
рейтинг книги
Тайный наследник для миллиардера

Волк 2: Лихие 90-е

Киров Никита
2. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 2: Лихие 90-е

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Столичный доктор

Вязовский Алексей
1. Столичный доктор
Фантастика:
попаданцы
альтернативная история
8.00
рейтинг книги
Столичный доктор

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!