Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:
§ 2. Излучение
Перейдем от общей картины мира к явлениям излучения. Прежде всего мы должны выбрать тот член в выражении (28.3), который спадает обратно пропорционально первой (а не второй!) степени расстояния. Оказывается, что этот член имеет столь простой вид, что если принять его в качестве закона поведения электрического поля, создаваемого движущимся зарядом на больших расстояниях, то можно излагать электродинамику и оптику на элементарном уровне. Мы временно примем этот закон без доказательства, а позже изучим его подробнее.
Первый член в правой части (28.3) явно обратно пропорционален второй степени расстояния; легко показать, что и второй член, дающий поправку на запаздывание для первого, меняется таким же образом. Весь интересующий нас эффект заключен в третьем члене, и в общем он не так уж
Формула (28.5) выражает закон излучения, потому что единственный член, который она содержит, спадает обратно пропорционально расстоянию и, следовательно, доминирует на больших расстояниях от заряда. (Часть, меняющаяся обратно пропорционально квадрату расстояния, становится настолько малой, что не представляет интереса.)
Продвинемся несколько вперед и выясним смысл формулы (28.5). Пусть заряд движется произвольным образом и мы наблюдаем его на некотором расстоянии. Представим на минуту, что заряд «светится» (хотя именно явление света мы и должны объяснить); итак, пусть заряд есть светящаяся белая точка. Мы видим движение этой точки. Но мы не можем точно определить, как она движется в данный момент, из-за упоминавшегося уже ранее запаздывания. Имеет смысл говорить только о том, как она двигалась в более ранний момент времени. Единичный вектор er’ направлен к кажущемуся положению заряда. Конец вектора er’, естественно, описывает некую кривую, так что ускорение имеет две составляющие. Одна из них — поперечная составляющая, возникающая из-за движения конца вектора вверх и вниз, а другая — радиальная, или продольная, возникающая из-за вращения конца вектора по сфере. Легко показать, что вторая составляющая много меньше первой и изменяется обратно пропорционально квадрату r для очень больших r. В самом деле, если отодвигать источник все дальше и дальше от точки наблюдения, колебания вектора er' будут становиться все слабее (обратно пропорционально расстоянию), а продольная составляющая ускорения будет убывать еще быстрее. Поэтому для практических целей достаточно спроектировать движение заряда на плоскость, находящуюся на единичном расстоянии. В результате мы приходим к следующему правилу: пусть мы наблюдаем движущийся заряд и все, что мы видим, запаздывает во времени, т. е. мы находимся в положении художника, который рисует пейзаж на полотне, стоящем от него на расстоянии единицы длины. Конечно, художник не учитывает тот факт, что скорость света конечна, а изображает мир таким, каким он его видит. Посмотрим, что он нарисует на этой картине. Мы увидим точку (изображение заряда), движущуюся по картине. Ускорение этой точки пропорционально электрическому полю. Вот и все, что нам нужно.
Таким образом, формула (28.5) дает полное и точное описание процесса излучения; в ней содержатся даже все релятивистские эффекты. Однако часто встречается более простая ситуация, когда заряды передвигаются с малой скоростью и на небольшие расстояния. Поскольку заряды движутся медленно, расстояния, которые они проходят с момента излучения, невелики, так что время запаздывания оказывается практически постоянным. В этом случае формула (28.5) упрощается. В самом деле, пусть заряд совершает малые смещения и находится примерно на одном и том же расстоянии от точки наблюдения. Время запаздывания на расстоянии r есть r/с. Тогда наше правило (определяющее поле излучения) будет выражаться так: если заряженное тело сдвигается на малые расстояния и боковое смещение есть x(t), то единичный вектор er' поворачивается на угол x/r, и поскольку r практически постоянно, то составляющая d2er'/dt2 в направлении x равна просто ускорению самой величины x в более ранний момент времени. В результате мы приходим к формуле
Сюда входят только составляющая ах, перпендикулярная лучу зрения. Попробуем понять, почему это так. В самом деле, когда заряд движется прямо к нам или от нас, единичный вектор в направлении заряда не смещается и ускорение равно нулю. Поэтому для нас существенно только боковое движение, т. е. только та часть ускорения, которая проектируется на экран.
§ 3. Дипольный излучатель
Примем формулу (28.6) в качестве основного закона электромагнитного излучения, т. е. будем считать, что электрическое поле, создаваемое нерелятивистски движущимся зарядом на достаточно больших расстояниях r, имеет вид (28.6). Электрическое поле обратно пропорционально r и прямо пропорционально ускорению заряда, спроектированному на «плоскость зрения», причем ускорение берется не в данный момент времени, а в более ранний (время запаздывания равно r/с). Вся оставшаяся часть главы будет посвящена приложению закона (28.6) к всевозможным явлениям распространения света и радиоволн, таким, как отражение, преломление, интерференция, дифракция и рассеяние. Закон (28.6) имеет фундаментальное значение и содержит всю необходимую для нас информацию. Остальная часть формулы (28.3) только декорация и нужна лишь для того, чтобы понять, как и почему возник закон (28.6).
В дальнейшем мы еще вернемся к формуле (28.3), а пока примем ее как нечто данное и отметим, что справедливость ее основывается не только на теоретических выводах. Можно придумать целый ряд опытов, в которых проявлялось бы действие закона (28.3). Для этого необходим ускоряющийся заряд. Строго говоря, заряд должен быть одиночным, но, если взять большое количество зарядов, движущихся одинаково, поле представится суммой вкладов отдельных зарядов. Для примера рассмотрим два отрезка проволоки, присоединенных к генератору, как показано на фиг. 28.1. Суть дела в том, что генератор создает разность потенциалов или поле, которое в один момент времени выталкивает электроны из участка А и втягивает их в участок В, а через ничтожно малый промежуток времени действие поля становится обратным и электроны из В перекачиваются обратно в А!
Фиг. 28.1. Высокочастотный генератор раскачивает электроны в проволоках вверх и вниз.
Так что в этих двух проволочках заряды на участках А и В как бы ускоряются одновременно то вверх, то вниз. Две проволоки и генератор нужны только в этом устройстве. Окончательный же результат таков, что заряды ускоряются вверх и вниз так, как если бы А и В составляли один кусок проволоки. Отрезок проволоки, длина которого очень мала по сравнению с расстоянием, проходимым светом за один период колебаний, называется электрическим диполъным осциллятором.
Таким образом, у нас есть прибор для создания электрического поля; теперь нам нужен прибор для детектирования электрического поля, но для этого можно взять то же самое устройство — пару проволок А и B! Если к такому устройству приложить электрическое поле, возникнет сила, движущая электроны по обеим проволокам либо вверх, либо вниз. Это движение фиксируется с помощью выпрямителя, смонтированного между проволоками А и В, а информация передается по тонкой проволоке в усилитель, где сигнал усиливается и воспроизводится со звуковой частотой путем модуляции радиочастот. Когда детектор воспринимает электрическое поле, из громкоговорителя доносится громкий звук; если поля нет, звука не возникает.
В помещении, где мы детектируем волны, обычно находятся и другие объекты, и электрическое поле тоже раскачивает в них электроны; они колеблются вверх и вниз и в свою очередь воздействуют на детектор. Поэтому для успешного эксперимента расстояние между источником волн и детектором не должно быть большим, чтобы снизить влияние волн, отраженных от стен и от нас самих. Таким образом, опыт может дать результаты, не вполне точно совпадающие с (28.6), но достаточные для грубой проверки нашего закона.