Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

Фиг. 26 10. Фокусирующая опти­ческая система.

Фиг. 26.11. Эллиптическое зеркало.

Это означает, что мы должны найти такую кривую, для которой сумма рас­стояний ХХ'-\-Х'Р' будет постоянна, независимо от выбора точки X. Легче всего это сделать, продолжив отрезок XX' до плоскости LL'. Потребуем теперь, чтобы выполнялись соот­ношения А'А"=А'Р',В'В"=В'Р', С'С"=С'Р' и т. д.; в этом случае мы получаем нужную нам кривую, потому что сумма длин А 'А+А 'Р' =АА'+А 'А'' будет постоянной для всех точек кривой.

Значит, наша кривая есть геометрическое место всех точек, равноудаленных от линии и некоторой заданной точки. Такая кривая называется параболой; вот зеркало телескопа и было изготовлено именно в форме параболы.

Приведенные примеры в общих чертах иллюстрируют прин­цип устройства оптических систем. Точные кривые можно рас­считать, используя правило равенства времен на всех путях, ведущих в точку фокуса, и требуя, чтобы время прохождения на всех соседних путях было большим.

В следующей главе мы еще вернемся к фокусирующим опти­ческим системам, а теперь обсудим дальнейшее развитие теории. Когда предлагается новый физический принцип, такой, как принцип наименьшего времени, то нашей первой естественной реакцией могли бы быть слова: «Все это очень хорошо, восхити­тельно, но вопрос заключается в том, улучшает ли это вообще наше понимание физики?». На это можно ответить: «Да. Посмот­рите сколько новых фактов мы теперь поняли!» А кто-то возра­зит: «Ну, в зеркалах я и так разбираюсь. Мне нужна такая кри­вая, чтобы каждая касательная к ней плоскость образовывала равные углы с двумя лучами света. Я могу рассчитать и линзу, потому что каждый падающий на нее луч отклоняется на угол, даваемый законом Снелла». Здесь очевидным образом содержа­ние принципа наименьшего действия совпадает с законом равен­ства углов при отражении и пропорциональности синусов углов при преломлении. Тогда, может быть, это философский вопрос, а может быть, вопрос просто в том, какой путь красивее? Можно привести аргументы в пользу обеих точек зрения.

Однако критерий важности всякого принципа состоит в том, что он предсказывает нечто новое.

Легко показать, что принцип Ферма предсказывает ряд но­вых фактов. Прежде всего предположим, что имеются три среды — стекло, вода и воздух и мы наблюдаем явление прелом­ления и измеряем показатель nдля перехода из одной среды в другую.

Фиг. 26.12. Параболическое зеркало.

Обозначим через n12 показатель преломления для пе­рехода из воздуха (1) в воду (2), а через n13— для перехода из воздуха (1) в стекло (3). Измерив преломление в системе вода— стекло, найдем еще один показатель преломления и назовем его п23 .Здесь заранее нет оснований считать, что n12 , n13 и n23 связаны между собой. Если же исходить из принципа наимень­шего времени, то такую связь можно установить. Показатель n12 есть отношение двух величин—скорости света в воздухе к скорости света в воде; показатель n13 есть отношение скорости в воздухе к скорости в стекле, а n23 есть отношение скорости в воде к скорости в стекле. Поэтому, сокращая скорость света в воздухе, получаем

(26.5)

Другими словами, мы предсказываем, что показатель преломле­ния для перехода из одного материала в другой можно получить из показателей преломления каждого материала по отношению к некоторой среде, скажем воздуху или вакууму. Таким обра­зом, измерив скорость света во всех средах, мы образуем одно число для каждой среды — показатель преломления для пере­хода из вакуума в среду — и называем его ni(например, ni для воздуха есть отношение скорости в воздухе к скорости в вакууме и т. д.), после чего легко написать нужную формулу. Показатель преломления для любых двух материалов i и j равен

(26.6)

Используя только закон Снелла, подобное соотношение пред­сказать невозможно. Но связь эта существует. Соотношение (26.5) известно давно и послужило сильным аргументом в поль­зу принципа наименьшего времени.

Еще одно предсказание принципа наименьшего времени со­стоит в том, что скорость света в воде при измерении должна оказаться меньше скорости света в воздухе. Это уже предсказа­ние совсем другого рода. Оно гораздо глубже, потому что носит теоретический характер и никак не связано с наблюдениями, из которых Ферма вывел принцип наименьшего времени (до сих пор мы имели дело только с углами). Как оказалось, скорость света в воде действительно меньше скорости в воздухе, и ровно настолько, чтобы получился правильный показатель преломле­ния.

§ 5, Более точная формулировка принципа Ферма

До сих пор мы фактически пользовались неправильной фор­мулировкой принципа наименьшего времени. Здесь мы сформу­лируем его более точно. Мы неправильно называли его принци­пом наименьшего времени и для удобства по ходу дела применя­ли неправильную его трактовку. Но теперь мы выясним точное содержание принципа. Пусть имеется зеркало. Мы его показали на

фиг. 26.3. Откуда свет знает, что он должен двигаться к зер­калу? Очевидно, путь, требующий наименьшего времени,— это линия АВ, Кое-кто поэтому может сказать: «Иногда этот путь требует как раз наибольшего времени». Так это неправильно! Путь по кривой наверняка займет еще больше времени! Точная формулировка принципа следующая: луч, проходящий по тра­ектории, обладает тем свойством, что любое малое изменение пути (скажем, на 1%), расположения точки падения луча на зеркало, или формы кривой, или какие-либо иные изменения, не приводит в первом порядке к изменению времени прохождения; изменение времени происходит только во втором порядке. Другими словами, согласно этому принципу, свет вы­бирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения.

С принципом наименьшего времени связана еще одна труд­ность, которую многие, не любящие такого рода теории, никак не могут переварить. Теория Снелла помогает легко «понять» поведение света. Свет проходит, видит перед собой поверхность и отклоняется, потому что на поверхности с ним что-то происхо­дит. Легко понять идею причинности, проявляющуюся в том, что свет идет из одной точки в другую, а затем в следующую. Но принцип наименьшего времени есть философский принцип, ко­торый совсем иначе объясняет причину явлений в природе. Вместо причинной обусловленности, когда из одного нашего действия вытекает другое и т. д., этот принцип говорит следую­щее: в данной ситуации свет выбирает путь с наименьшим, или экстремальным временем. Но как удается свету выбирать свой

Фиг. 26.13, Прохождение радио­волн сквозь узкую щель.

путь? Вынюхивает он что ли соседние пути и сравнивает их потом друг с другом? В некотором смысле так и происходит. Эту способность света нельзя понять в рамках геометрической оптики, поскольку она связана с понятием длины волны; длина волны, грубо говоря, есть тот отрезок впереди лежащего пути, который свет может «почувствовать» и сравнить с соседними путями. Этот факт трудно продемонстрировать на опыте со светом, так как длина волны света чрезвычайно мала. Но радио­волны с длиной волны, скажем, 3 см, «видят» намного даль­ше. Предположим, имеется источник радиоволн, детектор и экран со щелью, как показано на фиг. 26.13; при этих усло­виях лучи будут проходить из S в D, поскольку это прямо­линейная траектория, и даже если сузить щель, лучи все равно пройдут. Но если теперь отодвинуть детектор в точку D', то при широкой щели волны не пойдут из S в D', потому что они сравнят близлежащие пути и скажут: «Нет, друг мой, все эти пути требуют другого времени». С другой стороны, если оставить только узенькую щелку и таким образом по­мешать волнам выбирать путь, то окажутся годными уже несколько путей и волны пойдут по ним! Если щель узкая, в точку D' попадет больше излучения, чем через широкую щель! Такой же опыт возможен со светом, но в большом масштабе его проделать трудно. Этот эффект, однако, можно наблюдать в следующих простых условиях. Найдите маленький и яркий ис­точник света, например уличный фонарь, где-нибудь в конце ули­цы или отражение солнца от колеса автомобиля. Поставьте перед глазами два пальца, оставив для света узенькую щель, и посте­пенно сближайте пальцы, пока щель полностью не исчезнет. Вы увидите, что свет, который вначале казался крохотной точкой, начнет расплываться и даже вытянется в длинную линию. Про­исходит это потому, что между пальцами оставлена лишь очень маленькая щель и свет не идет, как обычно, по прямой, а рас­ходится под некоторым углом и в глаз попадает с разных направ­лений. Если вы будете достаточно внимательны, то заметите еще боковые максимумы и своеобразную кайму по краям.

Кроме того, само изображение будет окрашено. Все это будет в свое время объяснено, а сейчас этот опыт (а его очень легко проделать) просто демонстрирует, что свет не всегда распро­страняется по прямой.

§ 6. Квантовый механизм

В заключение дадим очень грубую картину того, что проис­ходит на самом деле, как протекает весь процесс распростра­нения света с квантовомеханической точки зрения, которую сейчас считают самой правильной (разумеется, наше описание будет носить лишь качественный характер). Исследуя свет на пути из А в В (см. фиг. 26.3), можно обнаружить, что он вовсе не представляет собой волны. Лучи света, оказывается, состоят из фотонов, которые можно реально зарегистрировать с помо­щью фотонного счетчика; они заставляют его щелкать. Яркость света пропорциональна среднему числу фотонов, пролетающему в 1 сек, а нас интересует вероятность попадания фотона из А в В при отражении от зеркала. Правило вычисления этой вероят­ности весьма необычно. Выберем какой-нибудь путь и найдем время на этом пути; затем образуем комплексное число или нари­суем маленький комплексный вектор rеiq, где угол q пропорционален времени. Число оборотов вектора в секунду — это частота света. Возьмем теперь другой путь, и пусть он занимает другое время; тогда соответствующий ему вектор повернется на угол, отличный от первого (вспомним, что угол всегда пропорциона­лен времени). Переберем все возможные пути и сложим векторы для каждого из них, тогда квадрат длины суммарного вектора определит вероятность прохождения фотона из начальной точки в конечную!

Поделиться:
Популярные книги

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Долг

Кораблев Родион
7. Другая сторона
Фантастика:
боевая фантастика
5.56
рейтинг книги
Долг

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Не ангел хранитель

Рам Янка
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Не ангел хранитель

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5