Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

Фиг. 30.1. Результирующая ам­плитуда шести аквидистантных источников при разности фаз j между каждыми двумя соседними источниками.

Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее

центр. Тогда угол OQS равен как раз фазе j (поскольку радиус QS образует с А2 такой же угол, как QO с a1). Следовательно, радиус rдол­жен удовлетворять равенству А = 2rsinj/2, откуда мы и на­ходим величину r. Далее, большой угол OQT равен nj; следо­вательно, AR=2rsinnj/2. Исключая из обоих равенств г, получаем

(30.2)

Таким образом, суммарная интенсивность оказывается равной

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n =1, получим, как и следовало ожидать, I = I0. Проверим формулу для n=2: с помощью соотношения sinj=2sin j/2cosj/2 сразу находим АR = 2Acosj/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших nи j, близ­ких к нулю. Прежде всего, когда j точно равно нулю, мы полу­чаем отношение О/О, но фактически для бесконечно малых j отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2раз больше интенсивности одного осциллятора. Этот результат легко по­нять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в nраз больший исход­ного, а интенсивность увеличивается в n2 раз.

С ростом фазы j отношение двух синусов падает и обращается в нуль в первый раз при nj/2 = p, поскольку sinp=0. Дру­гими словами, значение j=2p/n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов воз­вращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2л.

Перейдем к следующему максимуму и покажем, что он дей­ствительно, как мы и ждали, много меньше первого. Для точ­ного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с измене­нием j. Мы не станем этого делать, поскольку при большом n sinj/2 меняется медленнее sinj/2 и условие sinj/2 =1 дает положение максимума с большой точностью. Макси­мум sin2nj/2 достигается при nj/2=Зp/2 или j= Зp/n. Это озна­чает, что стрелки векторов описывают полторы окружности.

Подставляя j=3p/n, получаем sin23p/2=l в числителе (30.3) (с этой целью и был выбран угол j) и sin23n/2n в знамена­теле. Для достаточно большого n можно заменить синус его аргументом: sin Зp/2n =3p/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I0 (4n2/9p2). Но n2I0не что иное, как интенсивность в первом максимуме, т. е. интенсив­ность второго максимума получается равной 4/9p2 от максималь­ной, что составляет 0,047, или меньше 5%! Остальные макси­мумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.

Фиг. 30.2. Зависимость интенсивности от фазово­го угла для большого числа осцилляторов с одинаковыми амплитудами.

Фиг. 30.3. Устройство из n одинаковых осцил­ляторов, расположенных на линии. Фаза колебания s-го осциллятора равна as=sa.

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2pnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной ли­нии, как показано на фиг. 30.3. Всего имеется nисточников на расстоянии d друг от друга, и сдвиг фазы между соседними источ­никами выбран равным а. Тогда для лучей, распространяющихся в заданном направлении Э, отсчитываемом от нормали, вследст­вие разности хода лучей от двух соседних источников возникает

дополнительный сдвиг фазы 2pd(1/l)sinq. Таким образом,

(30.4)

Рассмотрим сначала случай a=0. Все осцилляторы колеб­лются с одной фазой; требуется найти интенсивность их излуче­ния как функцию угла В. Подставим с этой целью j=kdsinq в формулу (30.3) и посмотрим, что получится в результате. Пре­жде всего, при j=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направ­лении 0 =0. Интересно узнать, где находится первый минимум.

Он возникает при j=2p/n; другими словами, первый мини­мум кривой интенсивности определяется из соотношения (2pd/l)sinq=2p/n. Сокращая на 2p, получаем

(30.5)

Теперь разберем с физической точки зрения, почему мини­мум возникает именно в этом месте. В этом выражении nd есть полная длина L нашей системы осцилляторов. Обращаясь к фиг. 30.3, мы видим, что ndsinq=Lsinq=D. Формула (30.5) подсказывает нам, что минимум возникает при D, равном одной длине волны. Но почему минимум получается при D = l? Дело в том, что поля от отдельных осцилляторов равномерно распределены по фазе от 0 до 360°. Стрелки (см. фиг. 30.1) опи­сывают полную окружность; мы складываем равные векторы, имеющие произвольные направления, а в этом случае сумма равна нулю. Вот при таких значениях угла, когда D=l, воз­никает минимум. Это и есть первый минимум.

Формула (30.3) имеет еще одну важную особенность: при уве­личении угла j на число, кратное 2p, значение интенсивности не меняется. Поэтому для j =2p, 4p, 6p и т. д. также возникают резкие и высокие максимумы. Вблизи этих максимумов интен­сивность повторяет свой ход (см. фиг. 30.2). Зададимся вопро­сом, в силу каких геометрических соотношений возникают дру­гие максимумы? Условие появления максимума записывается в виде j==2pm, где mлюбое целое число. Отсюда получаем (2pd/l)sinq=2pm. Сокращая на 2p, получаем

Поделиться:
Популярные книги

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря