Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:
Выражение (30.15) можно понимать как сумму большого числа маленьких комплексных чисел, модуль которых ar, a угол в комплексной плоскости q=-wr/с. Попробуем оценить эту сумму графически. На фиг. 30.11 отложены первые пять членов суммы. Каждый отрезок кривой имеет длину Dr и расположен под углом Dq =-w(Dr/с) к предыдущему отрезку. Сумма первых пяти слагаемых обозначена стрелкой из начальной точки к концу пятого отрезка. Продолжая прибавлять отрезки, мы опишем многоугольник, вернемся примерно к начальной точке и начнем описывать новый многоугольник. Чем большее число отрезков мы будем прибавлять, тем большее число раз мы обернемся, двигаясь почти по окружности с радиусом с/w. Теперь понятно, почему интеграл дает при вычислении неопределенный ответ!
Здесь
Фиг. 30.11. Вычисление интеграла
графическим способом.
постепенно уменьшается по мере удаления от центра (или обращается в нуль вне некоторой границы неправильной формы, так что для достаточно больших r вклад всего кольца шириной dr равен нулю), то коэффициент ню в точном интеграле убывает, стремясь к нулю. Поскольку длина добавляемых отрезков в этом случае уменьшается, а угол Dq остается тем же самым, график кривой, соответствующей интегралу, будет иметь вид спирали. Спираль оканчивается в центре первоначальной окружности, как изображено на фиг. 30.12. Физически правильное значение интеграла дается величиной А, которой на схеме соответствует расстояние от начальной точки до центра окружности, равное как нетрудно убедиться.
(30.17)
Точно такой же результат мы получили бы из (30.16), положив e– iҐ=0.
(Есть еще одна причина, почему вклад в интеграл от больших значений r стремится к нулю,— это опущенный нами множитель, учитывающий проекцию ускорения на плоскость, перпендикулярную линии PQ.)
Нас, конечно, интересует именно случай, имеющий физический смысл, поэтому мы положим е– iҐ равным нулю. Возвращаясь к формуле (30.12) для поля и вводя все опущенные ранее множители, мы получаем
(30.18)
(помня, что l/i =-i).
Интересно отметить, что iwx0eiwtв точности равно скорости зарядов, так что выражения для поля можно переписать в виде
Этот
даже для z<l.]
*В нашем случае T=D/с=mnl,/с, где с — скорость света. Частота v=c/l, так что dv=cdl/l 2 .
*Прежде всего потому, что сам критерий Рэлея приближенный. Он только указывает область углов, где трудно разобрать, сколько звезд на изображении — одна или две. А в действительности, если точно измерить распределение интенсивности, можно различить два источника при углах q, даже меньших l/L.
Глава 31
КАК ВОЗНИКАЕТ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ
§ 1. Показатель преломления
§ 2. Поле, излучаемое средой
§ 3. Дисперсия
§ 4. Поглощение
§ 5. Энергия световой волны
§ 6. Дифракция света на непрозрачном экране
§ 1. Показатель преломления
Мы уже говорили, что свет в воде движется медленнее, чем в воздухе, а в воздухе чуть медленнее, чем в вакууме. Этот факт учитывается введением показателя преломления п. Попробуем теперь понять, как возникает уменьшение скорости света. В частности, особенно важно проследить связь этого факта с некоторыми физическими предположениями или законами, которые были ранее высказаны и сводятся к следующему:
а) полное электрическое поле при любых физических условиях может быть представлено в виде суммы полей от всех зарядов во Вселенной;
б) поле излучения каждого отдельного заряда определяется его ускорением; ускорение берется с учетом запаздывания, возникающего из-за конечной скорости распространения, всегда равной c. Но вы, наверное, приведете сразу в качестве примера кусок стекла и воскликнете: «Ерунда, это положение здесь не годится. Нужно говорить, что запаздывание отвечает скорости c/n». Однако это неправильно; попробуем разобраться, почему это неправильно. Наблюдателю кажется, что свет или любая другая электрическая волна распространяется сквозь вещество с показателем преломления n со скоростью с/n. И это с некоторой точностью так и есть. Но на самом деле поле создается движением всех зарядов, включая и заряды, движущиеся в среде, а все составные части поля, все его слагаемые распространяются с максимальной скоростью c. Задача наша состоит в том, чтобы понять, как возникает кажущаяся меньшая скорость.
Фиг. 31.1. Прохождение электрических волн сквозь слой прозрачного вещества.
Попробуем понять это явление на очень простом примере. Пусть источник (назовем его «внешним источником») помещен на большом расстоянии от тонкой прозрачной пластинки, скажем стеклянной. Нас интересует поле по другую сторону пластинки и достаточно далеко от нее. Все это схематично представлено на фиг. 31.1; точки S и Р здесь предполагаются удаленными на большое расстояние от плоскости. Согласно сформулированным нами принципам, электрическое поле вдали от пластинки представляется (векторной) суммой полей внешнего источника (в точке S) и полей всех зарядов в стеклянной пластинке, причем каждое поле берется с запаздыванием при скорости с. Напомним, что поле каждого заряда не меняется от присутствия других зарядов. Это наши основные принципы. Таким образом, поле в точке Р