Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
Е х =Е 0 е – i w ( t – nz / c ) .
Если подставить n в виде
и с увеличением z она экспоненциально убывает. График напряженности электрического поля как функции от z в некоторый момент времени и для nI» nR/2p показан на фиг. 32.1.
Фиг. 32.1. График поля Ех в некоторый момент t при nI»nR2/p.
Мнимая часть показателя преломления из-за потерь энергии в атомных осцилляторах приводит к ослаблению волны. Интенсивность волны пропорциональна квадрату амплитуды, так что
Интенсивность ~е– 2wnIz/c.
Часто это записывается как
Интенсивность ~е– bz,
где b=2wnI/с — коэффициент поглощения. Таким образом, в уравнении (32.33) содержится не только теория показателя преломления вещества, но и теория поглощения им света.
В тех материалах, которые мы обычно считаем прозрачными, величина c/wnI, имеющая размерность длины, оказывается гораздо больше толщины материала.
§ 5. Показатель преломления смеси
В нашей теории показателя преломления имеется еще одно предсказание, которое можно проверить экспериментально. Предположим, что мы рассматриваем смесь двух материалов. Показатель преломления смеси не будет средним двух показателей, а определяется через сумму двух поляризуемостей, как в уравнении (32.34). Если, скажем, мы интересуемся показателем преломления раствора сахара, то полная поляризуемость будет суммой поляризуемостей воды и сахара. Но каждая из них, разумеется, должна подсчитываться исходя из данных о числе молекул N данного сорта в единице объема. Другими словами, если в данном растворе содержится N1молекул воды, поляризуемость которой a1, и N2молекул сахарозы (C12H22O11), поляризуемость которой a2, то мы должны получить
Этой формулой можно воспользоваться для экспериментальной проверки нашей теории — измерения показателя для различных концентраций сахарозы в воде. Однако здесь мы должны сделать несколько допущений. Наша формула предполагает, что при растворении сахарозы никакой химической реакции не происходит и что возмущение индивидуальных осцилляторов при различных частотах отличается не слишком сильно. Поэтому наш результат, безусловно, будет только приближенным. Тем не менее давайте посмотрим, насколько он хорош.
Раствор сахара мы выбрали потому, что мы располагаем хорошими данными измерений показателя преломления и, кроме того, сахар представляет собой молекулярный кристалл и переходит в раствор без ионизации и других изменений химического состояния.
В первых трех столбцах табл. 32.2 приведены данные из указанного справочника. В столбце А дан процент сахарозы по весу, в столбце В приведена измеренная плотность в г/см3, а в столбце С даны измерения показателя преломления света с длиной волны 589,3 ммк. В качестве показателя чистого сахара мы взяли результаты измерений для кристалла сахара. Эти кристаллы не изотропны, так что показатель преломления в разных направлениях различен.
Таблица 32.2 в ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ РАСТВОРА САХАРА И СРАВНЕНИЕ С ПРЕДСКАЗАНИЕМ УРАВНЕНИЯ (32.37)
Справочник дает три величины:
n1=1,5376, n2=1,5651, n3=1,5705.
Мы взяли среднее.
Попытаемся теперь подсчитать n для каждой концентрации, но мы не знаем, какие нужно взять значения a1 и a2. Проверим теорию таким способом: будем предполагать, что поляризуемость воды (a1) при всех концентрациях одна и та же, и подсчитаем поляризуемость сахарозы, используя экспериментальную величину n и разрешая (32.37) относительно a2. Если теория верна, то мы для любой концентрации должны получить одно и то же значение a2.
Прежде всего нам нужно знать числа N1и N2; выразим их через число Авогадро N0. В качестве нашей единицы объема давайте возьмем один литр (1000 см3). Тогда отношение Ni/N0 равно весу одного литра, поделенному на грамм-молекулу. А вес литра равен произведению плотности (умноженной на 1000, чтобы получить граммы) на весовую долю либо сахарозы, либо воды. Таким путем получаем N2//N0и n1/n0, записанные в столбцах D и Е нашей таблицы. В столбце F мы подсчитали 3(n2– 1)/(n2+2), исходя из экспериментальных значений n (столбец С). Для чистой воды 3(n2– 1)/(n2+2) равно 0,617, что как раз будет N1a1. Затем мы можем заполнить остальную часть колонки G, поскольку для каждой строки отношение G/E должно быть одной и той же величиной, именно 0,617:55,5. Вычитая столбец G из столбца F, находим вклад N2a2, вносимый сахарозой, который записан в столбце Н. А затем, поделив эти данные на величину N2/N0 из столбца D, мы получаем величину N0a2, приведенную в столбце 1.
Из нашей теории мы ожидали, что все величины N0a2должны получиться одинаковыми. Они получились хотя и не точно равными, но довольно близкими друг к другу. Отсюда можно заключить, что наши идеи правильны. Более того, мы нашли, что поляризуемость молекул сахара, по-видимому, не зависит сильно от ее окружения: их поляризуемость приблизительно одна и та же как в разбавленном растворе, так и в кристалле.
§ 6. Волны в металлах
Теорию, которая в этой главе развивалась для твердых материалов, после очень небольшой модификации вполне можно применить и к хорошим проводникам типа металлов. На некоторые из электронов в металлах не действует сила, привязывающая их к какому-то частному атому; это так называемые «свободные» электроны, ответственные за проводимость. Там есть и другие электроны, которые связаны в атомах, и изложенная выше теория непосредственно приложима именно к ним. Однако их влияние обычно «забивается» эффектами электронов проводимости. Поэтому сейчас мы рассмотрим только эффекты