Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:

Smv=Svm. . (31.29)

Другими словами, компоненты Sxt, Syt, Szt, которые представ­ляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы ви­дели раньше из других соображений, вектора потока энергии.

Оставшиеся компоненты

тензора электромагнитного напря­жения Smvтоже можно выразить через электрическое и магнит­ное поля Е и В. Иначе говоря, для электромагнитного поля в пустом пространстве мы должны допустить существование тензора напряжений, или, выражаясь менее таинственно, по­тока импульса электромагнитного поля. Мы уже обсуждали это в гл. 27 (вып. 6) в связи с уравнением (27.21), но тогда мы не входили в детали.

Тем из вас, кто хочет испытать свою удаль на четырехмер­ных тензорах, может понравиться выражение для тензора Smvчерез поля:

где суммирование по a и b проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы S и символа d принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а dtt=+1, тогда как dxx.=dуу = dzz=-1 и dmv=0 для всех m№v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(e0/2)(E2+B2) и вектору Пойнтинга e0ЕXВ? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электриче­скому полю и вдоль направления поля возникает натяжение (e0/2)E2и равное ему давление в направлении, перпендикуляр­ном направлению поля?

* Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (e 0 /2)(E 2 2 B 2 ) или в единицах СИ 1 / 2 [e 0 E 2 +(l/m 0 )B 2 ]. — Прим. ред.

* Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p 0 *Е постоянного дипольного момента p 0 в поле Е.

* Обычно для коэффициентов пропорциональности между Р и Е пользуются термином тензор восприимчивости, оставляя термин поля­ризуемость для величин, относящихся к одной частице. Прим. ред.

* В гл. 10, следуя общепринятому соглашению, мы писали Р=e 0 cЕ и величину c (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо e 0 c мы будем писать a. Для изо­тропного диэлектрика a=(c-1)e 0 , где c — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)

Глава 32

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА

§ 1. Поляризация вещества

§ 2. Уравнения Максвелла в диэлектрике

§ 3. Волны в диэлектрике

§ 4. Комплексный показатель преломления

§ 5. Показатель преломления смеси

§ 6. Волны в металлах

§ 7.Низкочастотное и высокочастотное приближение глубина скин-слоя и плазменная частота

Повторить: всё что в табл. 32.

§ 1. Поляризация вещества

Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плот­ным веществом. Теорию показателя преломле­ния мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на по­казателе преломления веществ с малой плотно­стью наподобие газов. Но физические принципы, приводящие к возникновению показателя пре­ломления, мы там все же выяснили. Электри­ческое поле световой волны поляризует мо­лекулы газа, создавая тем самым осцилли­рующие дипольные моменты, а ускорение ос­циллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерфери­руя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эф­фект в целом оказывается эквивалентным из­менению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникаю­щими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действую­щие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эф­фект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.

Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломле­ния (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я соби­раюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах, а сразу же буду браться за уравнения.

Таблица 32.1 · ЧТО БУДЕТ ИСПОЛЬЗОВАНО В ЭТОЙ ГЛАВЕ

Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится N ча­стиц и каждая из них ведет себя как гармонический осциллятор. Мы пользуемся моделью атома или молекулы, к которой элект­рон привязан силой, пропорциональной его перемещению (как будто он удерживается пружинкой). Отметим, что такая модель атома с классической точки зрения незаконна, однако позднее будет показано, что правильная квантовомеханическая теория дает (в простейших случаях) эквивалентный результат. В наших прежних рассмотрениях мы не учитывали «тормозящей» силы в атомном осцилляторе, а сейчас это будет сделано. Такая сила соответствует сопротивлению при движении, т. е. она пропор­циональна скорости электрона. Уравнением движения при этом будет

Поделиться:
Популярные книги

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Идеальный мир для Социопата 6

Сапфир Олег
6. Социопат
Фантастика:
боевая фантастика
рпг
6.38
рейтинг книги
Идеальный мир для Социопата 6

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

В зоне особого внимания

Иванов Дмитрий
12. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
В зоне особого внимания

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

Наследник старого рода

Шелег Дмитрий Витальевич
1. Живой лёд
Фантастика:
фэнтези
8.19
рейтинг книги
Наследник старого рода

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря