Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
Для любого тела независимо от его формы можно найти эллипсоид энергии, а следовательно, и три главные оси. Относительно этих осей тензор будет диагональным, так что для любого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.
§ 5. Векторное произведение
Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы определили там «момент силы, действующий в плоскости», например txy, следующим образом:
txy=xFy– yFx.
Обобщая
tij=riFj– rjFi. (31.22)
Как видите, величина tij — это тензор второго ранга. Один из способов убедиться в этом — свернуть tij с каким-то вектором, скажем с единичным вектором е, т. е. составить
Если эта величина окажется вектором, то tijдолжен преобразовываться как тензор — это просто наше определение тензора. Подставляя выражение для tij, получаем
Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что tij– — действительно тензор.
Однако tijпринадлежит к особому сорту тензоров, он антисимметричен, т. е.
tij=-tji.
Поэтому у такого тензора есть только три разные и неравные нулю компоненты: txy, tyz и tzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор
t=(tx,. ty, tz) = (tyz, tzx, txy).
Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить вектором, у которого компонент только четыре.
Точно так же как аксиальный вектор t==rXF является тензором, по тем же соображениям тензором будет и любое векторное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.
Вообще говоря, для любых двух векторов а и b девять величин aibjобразуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора положения r величины rirjявляются тензором, а поскольку dij. тоже тензор, то мы видим, что правая часть (31.20) действительно является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.
§ 6. Тензор напряжений
Встречавшиеся до сих пор симметричные тензоры возникали
Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были действовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендикулярную оси х, подобную плоскости s на фиг. 31.5, и интересуемся силами, действующими на маленькой площадке Dy/Dz, расположенной в этой плоскости.
Фиг. 31.5. Материал, находящийся слева от плоскости s на площади Dy/Dz, действует на материал, находящийся справа, с силой D F 1 .
Материал, находящийся слева от площадки, действует на материал с правой стороны с силой DF1 (фиг. 31.5, б). Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила —DF1. Если площадка достаточно мала, то мы ожидаем, что сила DF1 пропорциональна площади Dy/Dz.
Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умноженному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущейся вязкой жидкости сила не обязательно перпендикулярна поверхности: помимо давления (положительного или отрицательного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметьте еще, что если разрез мы сделаем по плоскости с какой-то другой ориентацией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.
Определим тензор напряжений следующим образом. Вообразите сначала разрез, перпендикулярный оси х, и разложите силу DF1, действующую на разрезе, на ее компоненты: DFx1, DFy1, DFz1 (фиг. 31.6).
Фиг. 31.6. Сила DF1, действующая на элементе площади DyDz, перпендикулярной оси х, разлагается на три компоненты: DFx1, DFу1 и DFz1.