Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
§ 2. Преобразование компонент тензора
Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Ег'тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты aijоказываются различными. Однако вполне можно выяснить, как должны изменяться а при надлежащем изменении компонент Е и Р,
Р x ’ =аР х +bР у +сР z ,
и аналогично для других компонент. Если вместо Рх, Рyи Рzподставить их выражения через Е согласно (31.4), то получится
Теперь напишите, как выражается Ех, Еyи Ezчерез Еx' , Еy'и Еz' , например,
E x = a'E x ' +b'E y ' +c'E z ' ,
где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх'через компоненты Ех', Еy'и Ez' , т. е. получились новые aij. Никаких хитростей здесь нет, хотя все это достаточно запутано.
Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то a не изменяются. И обратно, если по отношению к осям изменять ориентацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристалла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются
Связь между Р и Е в уравнении (31.4) можно записать в более компактном виде:
где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из таких общих соглашений состоит в том, что можно не писать знака суммы (S) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
§ 3. Эллипсоид энергии
Потренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна e0Е2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qExdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qExNdx. Но qNdx равно изменению дипольного момента единицы объема dPx. Так что работа, затраченная на единицу объема, равна
E x dP x .
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
E·dP.
Но поскольку величина Р пропорциональна Е, то работа, затраченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через ир, можно написать
Теперь можно воспользоваться уравнением (31.5) и выразить Р через E. В результате получим
Плотность энергии ир — величина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойством, что, будучи просуммирован по одному индексу (с вектором), он дает новый вектор, а будучи просуммирован по обоим индексам (с двумя векторами), дает скаляр.
Тензор aijна самом деле нужно называть «тензором второго ранга», ибо у него два индекса. В этом смысле вектор, у которого всего один индекс, можно назвать «тензором первого ранга», а скаляр, у которого вообще нет индексов,— «тензором нулевого ранга». Итак, выходит, что электрическое поле Е будет тензором первого ранга, а плотность энергии up — тензором нулевого ранга. Эту идею можно распространить на тензоры с тремя и более индексами и определить тензоры, ранг которых выше двух.