Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
S xn =S xx n x +S xy n y
рели теперь обобщить это на произвольный элемент поверхности, то мы получим
Sxn= Sxxnx+Sxyny+Sxznz,
или в еще более общей форме:
Так
Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как aijсвязывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sijпри изменении осей координат должны преобразовываться как тензор. Так что Sijдействительно тензор.
Можно также доказать, что Sij симметричный тензор. Для этого нужно обратить внимание на силы действующие на маленький кубик материале. Возьмем кубик, rpaни которого параллельны осям координат, и посмотрим на eго разрез (фиг. 31.9).
Фиг. 31.9. х- и у-компоненты сил, действующих на четыре грани маленького единичного кубика.
Если допустить что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметьте теперь, что на кубик не должен действовать никакой момент си иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению (Syx– Sxy) на единичную длину ребра куба, а поскольку полный момент равен нулю, то S должно быть равно Sxy, и тензор напряжений, таким образом, оказывается симметричным.
Благодаря этой симметрии тензора Sijего можно то; описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим: осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никак сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательном. Таким образом, для гидростатического давления тензор диагонален, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать
Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компоненту Sijкак функцию положения. Тензор напряжений, таким образом, является полем. Мы уже имели примеры скалярных полей, подобных температуре Т(х, у, z), и векторных полей, подобных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задаваемого в каждой точке пространства девятью числами, из которых для симметричного тензора Sijреально остается только шесть. Полное описание внутренних сил в произвольном твердом теле требует знания шести функций координат х, у и z.
§ 7. Тензоры высших рангов
Тензор напряжений Sijописывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформации удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подобного бруску из металла, изменение длины DL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука
DL=gF.
Для произвольных деформаций упругого твердого тела тензор деформаций Tijсвязан с тензором напряжений Sijсистемой линейных уравнений
Вы знаете также, что потенциальная энергия пружины (или бруска) равна
а обобщением плотности упругой энергии для твердого тела будет выражение
Полное описание упругих свойств кристалла должно задаваться коэффициентами gijkl. Это знакомит нас с новым зверем — тензором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего оказывается 34=81 коэффициент. Но различны из них на самом деле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициентов. Затем, не изменяя энергии, мы можем переставить Sijи Skl, так что gijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей возможной симметрии, требуется 21 упругая постоянная! Разумеется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кристалл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.
В справедливости последнего утверждения можно убедиться следующим образом. В случае изотропного материала компоненты gijklне должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры dij. Но существует лишь два возможных выражения, имеющих требуемую симметрию,— это dijdkl и dikdjl+dil+djk, так что gijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала
gijkl =а(dijdkl) + b(dikdjl+dildjk);
следовательно, чтобы описать упругие свойства материала, требуются две постоянные: а и b. Я предоставляю вам самим доказать, что для кубического кристалла требуются три такие постоянные.
И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При напряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид