Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
«Векторы»; гл. 20 (вып. 2)
«Вращение в пространстве»
§ 1. Тензор поляризуемости
У физиков есть привычка брать простейший пример какого-то явления и называть его «физикой», а примеры посложнее отдавать на растерзание других наук, скажем прикладной математики, электротехники, химии или кристаллографии. Даже физика твердого тела для них только «полуфизика», ибо ее волнует слишком много специальных вопросов. По этой-то причине мы в наших лекциях откажемся от множества интересных вещей. Например, одно из важнейших свойств кристаллов и вообще большинства веществ — это то, что их электрическая поляризуемость различна в разных направлениях. Если вы в каком-либо направлении приложите электрическое поле, то атомные заряды слегка сдвинутся и возникнет дипольный момент; величина же этого момента зависит очень сильно от направления приложенного поля. А это, конечно, усложнение. Чтобы облегчить себе жизнь, физики начинают разговор со специального случая, когда поляризуемость во всех направлениях одинакова. А другие случаи мы предоставляем другим наукам. Поэтому для наших дальнейших рассмотрении нам совсем не понадобится то, о чем мы собираемся говорить в этой главе.
Математика тензоров особенно полезна для описания свойств веществ,
В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного момента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности прикладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет . Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.
Предположим, мы обнаружили, что для некоторого выбранного кристалла электрическое поле Е1; направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одинаковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже направленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это показано на фиг. 31.1, а.
Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.
Поляризация уже не параллельна направлению электрического поля. Нетрудно понять, отчего так происходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заряды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы. Разумеется, угол 45° ничем не выделен. То, что индуцированная поляризация не направлена по электрическому полю, справедливо и в общем случае. Перед этим нам просто «посчастливилось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызванная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,6. Но несмотря на все это усложнение, величина поляризации Р для любого поля Е по-прежнему пропорциональна его величине.
Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать
Рx =axxEx, Ру=aухЕх, Рz=azxЕx. (31.1)
Этим
Аналогично, для поля, направленного по оси у, мы можем написать
Рх=aхуЕy, Ру=aууЕу, Рz=aгуЕу, (31.2)
а для поля в z-направлении
Px=axzEz, Py=ayzEz Pz=azzEz. (31,3)
Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то составляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде
Диэлектрические свойства кристалла, таким образом, полностью описываются девятью величинами (axx,, axy,,axz,ayz , ...), которые можно записать в виде символа aij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электрическое поле Е можно разложить на составляющие Еx, Еyи Еz. Зная их, можно воспользоваться коэффициентами aijи найти Рх, Рy и Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aijназывается тензором — в данном примере тензором поляризуемости. Точно так же как три величины (Ех, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (aхх, aху, ...)«образуют тензор aij».