Истина и красота. Всемирная история симметрии.
Шрифт:
Одна такая формула естественно вытекает из комплексных чисел. Каждое комплексное число имеет «норму» — квадрат расстояния от числа до начала координат. По теореме Пифагора, норма числа x + iyравна x 2+ y 2. Правила умножения комплексных чисел, сформулированные Весселем, Арганом, Гауссом и Гамильтоном, говорят нам, что норма обладает очень приятным свойством. Если перемножить два комплексных числа, то нормы тоже перемножатся. На языке символов ( x 2 + y 2)( u 2 + v 2) = ( xv + yu) 2 + (xu – yv) 2.
На начальном этапе математиков в теории чисел сильно занимали суммы двух квадратов, потому что с их помощью можно было различать два типа простых чисел. Легко доказать, что если нечетное число представляется в виде суммы двух квадратов, то оно должно иметь вид 4 k + 1 для некоторого целого k. Остальные нечетные числа, имеющие вид 4 k + 3, нельзя представить в виде суммы двух квадратов. Однако неверно, что каждое число вида 4 k + 1 является суммой двух квадратов, даже если разрешить одному из квадратов равняться нулю. Первое такое исключение доставляет число 21.
Ферма сделал замечательное по красоте открытие: эти исключения не могут быть простыми числами. Он доказал, что, наоборот, каждое простое число вида 4 k +1 является суммой двух квадратов. Из приведенной выше формулы для перемножения сумм двух квадратов тогда следует, что нечетное число является суммой двух квадратов, если и только если каждый простой множитель вида 4 k + 3 входит в четной степени. Например, 45 = 3 2+ 6 2является суммой двух квадратов. Его разложение на простые множители имеет вид 3x3x5, и простой множитель 3, имеющий вид 4 k + 3 (при k = 0), возникает в степени два — т.е. в четной степени. Другой множитель, 5, возникает в нечетной степени, но это простое число имеет вид 4 k + 1 (при k = 1), что не вызывает никаких проблем.
С другой стороны, исключение 21 есть 3x7, где оба простых имеют вид 4 k + 3, причем каждое входит в степени 1 (т.е. в нечетной степени), и поэтому для 21 правило не работает. Для бесконечного числа других чисел оно не работает по той же причине.
Позднее Лагранж использовал аналогичные методы для доказательства того факта, что каждое положительное целое число является суммой четырех квадратов (здесь разрешаются нули). Его доказательство использует хитрую формулу, открытую Эйлером в 1750 году. Оно похоже на приведенное выше рассуждение, но только относится к суммам четырех квадратов. Сумма четырех квадратов, умноженная на сумму четырех квадратов, есть сумма четырех квадратов. Подобной формулы не может быть для суммы трех квадратов, потому что существуют пары чисел, которые оба являются суммой трех квадратов, но произведение которых такой суммой не является. Однако в 1818 году Деген нашел формулу произведения для суммы восьмиквадратов. Ту же формулу открыл Грейвс, используя октонионы. Бедный Грейвс — сделанное им раньше всех открытие октонионов приписано другому; его формула для восьми квадратов оказалась неоригинальной.
Имеется также тривиальная формула произведения для суммы одного квадрата — т.е. просто для квадрата. Она имеет вид x 2 y 2= (xy) 2. Эта формула является для вещественных чисел тем же, чем формула двух квадратов для комплексных: она показывает, что норма мультипликативна, т.е. норма произведения равна произведению норм. Здесь, как и выше, норма есть квадрат расстояния от числа до начала координат. Число, противоположное любому положительному числу, имеет ту же норму, что и это положительное.
А что насчет формулы для четырех квадратов? Она утверждает то же самое для кватернионов. Четырехмерный аналог теоремы Пифагора (да, есть такая штука!) говорит нам, что кватернион общего вида x + iу + jz + kwимеет норму x 2 + y 2 + z 2 + w 2, а это есть сумма четырех квадратов. Кватернионная норма также мультипликативна, и этим объясняется формула Лагранжа для четырех квадратов.
Вы, наверное, меня уже опередили. Формула Дегена для восьми квадратов имеет аналогичную интерпретацию в терминах октонионов. Октонионная норма мультипликативна.
Здесь происходит что-то весьма любопытное. У нас имеется четыре типа последовательно усложняющихся числовых систем: вещественные, комплексные, кватернионы и октонионы. Их размерности равны 1, 2, 4 и 8. Имеются формулы, утверждающие, что сумма квадратов, умноженная на сумму квадратов, есть сумма квадратов, и эти формулы применимы к 1, 2, 4 или 8 квадратам. Эти формулы тесно связаны с соответствующими числовыми системами. Но еще более интригующей является сама последовательность чисел, которые здесь появляются: 1, 2, 4, 8 — что дальше?
Если продолжить последовательность, то весьма разумно было бы ожидать, что мы найдем интересную 16-мерную числовую систему. Действительно, такую систему можно построить естественным путем, называемым процессом Кэли-Диксона. Если применить этот процесс к вещественным числам, то получаются комплексные. Применение к комплексным дает кватернионы. Применение к кватернионам — октонионы. И если теперь двинуться дальше и применить его к октонионам, получатся седенионы — 16-мерная числовая система, а затем алгебры размерности 32, 64 и так далее (на каждом шаге размерность удваивается).
Что же, существует формула для 16 квадратов?
Нет. Норма седенионов не мультипликативна. Формулы произведения для сумм квадратов существуют толькотогда, когда квадратов в них 1, 2, 4 или 8. Закон малых чисел снова проявил себя: то, что выглядело как последовательность степеней, стопорится.
Почему? По сути, потому что процесс Кэли-Диксона постепенно разрушает законы алгебры. Всякий раз, как он применяется, получающаяся система ведет себя в чем-то не так хорошо, как предыдущая. Шаг за шагом, закон за законом — и изящные вещественные числа погружаются в анархию. Подробности этого таковы.
Наши четыре числовые системы имеют и другие общие свойства, помимо нормированности. Наиболее впечатляющее — из-за которого они и попадают в класс обобщений вещественных чисел — состоит в том, что это «алгебры с делением». Имеется много алгебраических систем, к которым применимы понятия сложения, вычитания и умножения. Но в наших четырех системах можно, кроме того, делить. Существование мультипликативной нормы делает их «нормированными алгебрами с делением». В течение некоторого времени Грейвс полагал, что его метод перехода от 4 к 8 можно будет повторить, что приведет к нормированным алгебрам с делением размерностей 16, 32, 64 — всех степеней двойки. Но он наткнулся на препятствие с седенионами и начал сомневаться, действительно ли существует 16-мерная нормированная алгебра с делением. Он был прав: нам теперь известно, что существуют только четыре нормированные алгебры с делением, и они имеют размерности 1, 2, 4 и 8. Нет формулы для 16 квадратов, подобной формуле Грейвса для восьми квадратов или формуле Эйлера для четырех квадратов.