Как растения защищаются от болезней
Шрифт:
Аглпкрны гликозидов часто бывают высокотоксичными не только для патогена, по и для живой клетки, в которой они находятся. Поэтому гликозиды и ферменты, их расщепляющие (гликозидазы), находятся в различных частях клетки: гликозиды — в вакуоли, а гликозидазы — в цитоплазме. При повреждении целостности клетки ферменты и их субстраты приходят в соприкосновение, в результате чего высвобождаются чрезвычайно токсичные агликоны.
Терпеновые гликозиды содержат в качестве агликонов тритерпены и стероидные соединения. К их числу относятся многие сапонины и гликоалкалоиды (последние встречаются у растений семейств пасленовых и лилейных). Эти
Цианогенные гликозиды, обпаружейпые не менее чем у 200 видов растений, содержат циан в качестве агликона, который и накапливается в клетках после разрыва гликозидной связи и освобождения агликона. Поскольку циан является дыхательным ядом, то патогены, устойчивые к этим ядам, обладают способностью переключать свое дыхание на обходной альтернативный путь, нечувствительный к циану.
Наибольшую группу составляют фенольные гликозиды, агликонами которых служат фенольные соединения. Последние вообще играют исключительно важную роль в устойчивости растений к фитопатогенам, особенно основанной на СВЧ-ответе. Фенолы были первыми антибиотиками, наличием которых исследователи пытались объяснить устойчивость растений к болезням. Им посвящено бесчисленное число работ. Была предложена даже фенольная гипотеза устойчивости (1929 г.), которая сейчас представляет скорее исторический интерес.
Фенольные соединения всегда присутствуют в тканях здоровых растений. Их количество обычно сильно возрастает в поврежденных тканях (инфицированных, механически пораненных, облученных УФ-лучами или подвергнутых воздействию какого-либо химического агента). Многие фенольные соединения, ранее отсутствующие в растениях, возникают в них заново, либо за счет разложения гликозидов, либо в результате образования из простых предшественников. Таким образом, фенольные соединения имеются во всех 4 группах антибиотиков по классификации Ингхема.
Отличительным свойством фенольных соединений является их способность к окислению с помощью ферментов, носящих название полифенолоксидаз, активность которых также резко возрастает в ответ на повреждение растительной ткани. Первым продуктом, возникающим при окислении полифенолов, являются хиноны — высокотоксические, крайне реакционноспособные вещества, имеющие в силу этого короткий период жизни, которые затем быстро полимеризуются.
Фенольные соединения в здоровой растительной клетке находятся в вакуоли, тогда как полифенолоксидазы — в цитоплазме.
Иными словами, субстраты и превращающие их ферменты в клетке пространственно разобщены, и поэтому их окисление, если и происходит, то в ограниченных количествах. Последнее контролируется проницаемостью тонопласта — мембраны, окружающей вакуоль. К тому же процессы окисления в клетках компенсируются процессами восстановления, и поэтому продукты окисления фенолов не накапливаются.
В погибшей или погибающей в результате реакции СВЧ клетке проницаемость мембран нарушается, а затем они разрушаются совсем. В результате фенолы бесконтрольно и необратимо окисляются полифенолоксидазами, в конечном счете образуя меланины, присутствием которых в основном и объясняется темный цвет некротизированных клеток.
Защитные свойства фенольных соединений многообразны. Фенолы, содержащиеся в интактных растительных тканях, обычно недостаточно токсичны для того, чтобы подавлять развитие паразитов. Другое дело продукты, образующиеся при их окислении, особенно хиноны. Известно,
Даже не действуя непосредственно пд сам патоген, фенольные соединения, особенно их окисленные формы, оказывают значительное влияние на процессы патогенеза. Прежде всего это инактивация экзоферментов паразита, в первую очередь пектолитических, с помощью которых паразиты прободают клеточную стенку растений. Мы уже упоминали, что окисленные производные фенолов реагируют с сульфгидрильными, а также амино- и аминогруппами белков, чем и объясняется в значительной мере их инактивирующее воздействие на ферменты. Эти же свойства фенольных соединений лежат в основе их — способности дезорганизовывать мембранные структуры, а также нарушать ростовые процессы растений. Выше уже говорилось, что фенольные соединения, конденсируясь, образуют лигнин, предохраняющий оболочки клеток от разрушения.
Паразитарные микроорганизмы, обладающие в силу высокого коэффициента размножения широкими возможностями адаптации, обычно легко приспосабливаются к антибиотикам своего растения-хозяина. Как правило, антибиотики I, II и частично III группы мало защищают растения от поражения специфическими патогенами. В течение коэволюции со своим хозяином эти паразиты приобрели способность либо превращать и детоксицировать такие ингибиторы, либо вырабатывать толерантность к ним. Однако антибиотики этих групп выполняют весьма важную роль в механизме видового песпецифического фитоиммунитета.
Значительно сложнее осуществляется адаптация паразитов к антибиотикам IV группы — фитоалексинам, поскольку они отсутствуют в здоровой растительной ткани и возникают только в ответ на инфицирование. Именно этим антибиотикам и принадлежит ведущая роль в защите растений от фитопатогенов.
ФИТОАЛЕКСИНЫ
В 1940 г. немецкий профессор К. Мюллер со своим ассистентом Г. Бергером опубликовал статью, которой суждено было открыть новую страницу в учении об иммунитете растений к инфекционным болезням. В статье были представлены доказательства (правда, косвенные), что устойчивость растений, основанная на уже известной реакции СВЧ, связана с накоплением в некротизированных клетках антибиотиков. Эти вещества были названы фитоалексинами (от греческого фитон — растение, алексо — отражение атаки). Одновременно в статье были сформулированы основные положения будущей фитоалексинной теории.
Мюллер с сотрудниками уже в течение ряда лет работал над выведением фитофтороустойчивых сортов картофеля. Он знал, что у фитофторы существуют различные по вирулентности расы и что один и тот же сорт картофеля, высокоустойчивый к одной расе возбудителя фитофтороза, т. е. несовместимый к ней, легко поражается другой, совместимой расой. Совместимая раса проникала в клетки картофеля, долго и успешно в них развивалась, прежде чем клетки погибали. Но те же клетки погибали сразу (некротизировались), как только в них проникала несовместимая раса, вслед за тем погибали и гифы гриба. Разыгрывалась типичная реакция СВЧ, о которой в те годы уже хорошо знали.