Чтение онлайн

на главную

Жанры

Шрифт:

Д. Мелхиседек пишет: «Помните, я говорил, что спираль золотого сечения не имеет начала и конца и что для жизни это трудный момент? Она может справиться с бесконечностью, но ей трудно иметь дело с чем-то, что не имеет начала… И природа сотворила ряд Фибоначчи, чтобы обойти проблему. Как если бы Бог сказал: „Хорошо, идите и творите через спираль золотого сечения“, а мы ему: „Но мы не знаем, как“. Поэтому мы что-то создали, но не спираль золотого сечения, а нечто столь быстро приближающееся к ней, что с трудом можно заметить разницу» [41. С. 224].

Ряд Фибоначчи используется не только в ботанике и животноводстве.

Кстати, одним из первых обратил внимание на проявления золотой пропорции в ботанике И. Кеплер. А вообще, этот ряд хорошо отражает все объективные закономерности.

Так, интервалы, определяющие основные мажорные и минорные тонические трезвучия в музыке, соответствуют числам Фибоначчи 1, 3, 5 или 1, 5, 8. «Как показало изучение музыкальных произведений, кульминация мелодии тоже часто приходится на точку золотого сечения ее общей продолжительности» [96. С. 11].

Анализ пропорций выдающихся памятников архитектуры также показал, что их основные размеры находятся между собой в отношениях, очень близких числам Фибоначчи. Например, прославленная церковь Покрова на Нерли. Вряд ли ее творцы были знакомы с работами Фибоначчи. Но им не было чуждо чувство гармонии! Пропорции церкви соответствуют предельному отношению чисел Фибоначчи фи = = 1,618, почти так называемому золотому сечению. «Как мера и красота укажут…» — этим принципом руководствовались зодчие, возводя храм Покрова на Нерли. И оказалось, что его размеры относятся примерно как 2: 3: 5: 8, т. е. совпадают с числами Фибоначчи, а высота храма и его длина составляют золотую пропорцию [96. С. 11].

Еще в XIII столетии Фома Аквинский сформулировал один из основных принципов эстетики — чувствам человека приятны объекты, обладающие правильными пропорциями Он ссылался на прямую связь между красотой и математикой, которую нередко можно «измерить» и найти в природе В инстинктах человека заложена позитивная реакция на правильные геометрические формы как в окружающей природе, так и в рукотворных объектах, таких как произведения живописи. Фома Аквинский, таким образом, ссылался на тот же принцип, который открыл Фибоначчи.

В течение многих столетий люди пытались разгадать секреты пирамиды в Гизе. В отличие от других египетских пирамид, это не гробница, а скорее неразрешимая головоломка из числовых комбинаций. Потрясающие изобретательность, мастерство, время и труд архитекторов пирамиды, использованные ими при возведении вечного символа, указывают на чрезвычайную важность их послания, которое они хотели передать будущим поколениям. Ведь их эпоха была дописьменной, доиероглифической и символы были единственным средством записи открытий.

Ключ к геометроматематическому секрету пирамиды в Гизе, так долго бывшему для человечества загадкой, в действительности был передан Геродоту храмовыми жрецами, сообщившими ему, что пирамида построена так, чтобы площадь каждой из ее граней была равна квадрату ее высоты.

Длина грани пирамиды в Гизе равна 783,3 фута (238,7 м), высота пирамиды — 484,4 фута (147,6 м). Длина грани, деленная на высоту, приводит к соотношению фи = 1,618. Высота 484,4 фута соответствует 5813 дюймам (5-8-13) — это числа из последовательности Фибоначчи. Эти интересные наблюдения подсказывают, что конструкция пирамиды основана на пропорции фи = 1,618. Современные ученые склоняются к интерпретации, что древние египтяне построили ее с единственной целью — передать знания, которые они хотели сохранить для грядущих поколений.

Интенсивные исследования пирамиды в Гизе показали, сколь обширными были в те времена познания в математике и астрологии. Во всех внутренних и внешних пропорциях пирамиды число 1,618 играет центральную роль.

Но не только египетские пирамиды построены в соответствии с совершенными пропорциями золотого сечения. То же самое явление обнаружено и у мексиканских пирамид.

Возникает мысль, что как египетские, так и мексиканские пирамиды были возведены приблизительно в одно время людьми одного уровня развития.

Естественно, что пропорция фи не обошла и биологию. Так, если взглянуть на скелет лягушки, то можно увидеть, что все до единой кости находятся в пропорциях фи. Длина частей тела стрекозы также выдержана в этой пропорции, и даже в каждом виде рыб присутствует это вездесущее соотношение. А что же человек?

Первым подметил проявление закона золотого сечения в пропорциях человеческого тела А. Цейзинг [106. С. 86]. Он установил закономерность, согласно которой деление общей высоты человека в отношении золотой пропорции проходит через естественные членения тела. «Для того чтобы целое, разделенное на две неравные части, казалось прекрасным с точки зрения формы, между меньшей и большей частями должно быть то же самое отношение, что и между большей частью с целым».

Оказывается, и строение костных структур нашего организма основано на элементах золотой пропорции. Еще основатель графостатики К. Кульман обратил внимание, что кости человека и животного представляют собой оптимальную систему. Их геометрия соответствует максимальной несущей способности при минимальном расходе материи, образующей кости, в полном согласии с законами науки о сопротивлении материалов. Расположение клеток губчатых частей костей соответствует схемам графостатики, обеспечивающим восприятие наибольших нагрузок. Микроскопический анализ стеблей растений показал то же самое.

Рис. 16.Пропорции человека

ГЧ (размер головы) Г; ШШ1 (плечи) = 2Г; ЛЛ1 (размах рук) = 8Г; ШО (грудь) = 2Г; БК (бедро) = 2Г; Н (голень) = 2Г; ОК (пояс — колени) =3Г; ОН (щиколотки) = 5Г; ГС (макушка — ступня) = 8Г;

ШЛ (размах руки) = 3Г

На рисунке А. Дюрера «Изучение пропорций» хорошо видно: размеры тела человека (за единицу измерения выбрана голова) относятся как 1: 2: 3: 5: 8 и составляют ряд Фибоначчи (рис. 16). Стоит подчеркнуть, что пропорция фи обнаруживается во всей скелетной системе. Она обычно отмечается в тех местах, где что-то сгибается или меняет направление.

Поделиться:
Популярные книги

Право налево

Зика Натаэль
Любовные романы:
современные любовные романы
8.38
рейтинг книги
Право налево

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Не верь мне

Рам Янка
7. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Не верь мне

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Приручитель женщин-монстров. Том 5

Дорничев Дмитрий
5. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 5

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Стражи душ

Кас Маркус
4. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Стражи душ

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Real-Rpg. Еретик

Жгулёв Пётр Николаевич
2. Real-Rpg
Фантастика:
фэнтези
8.19
рейтинг книги
Real-Rpg. Еретик

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Совок – 3

Агарев Вадим
3. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
7.92
рейтинг книги
Совок – 3