Квантовая механика и интегралы по траекториям
Шрифт:
a
R
(-||)
=
e
h||/kT
a
R
(+||)
.
(12.129)
Это соотношение означает, что в теории возмущений, когда En>Em,
вероятность перехода за 1 сек
к большим энергиям (m->n)
вероятность перехода за 1 сек
к меньшим энергиям (n->m)
=
=
e
– (En– Em)/kT
;
(12.130)
при
Таким образом, если система q занимает различные состояния n с относительными вероятностями e– (En)/kT, то средние числа переходов к большим и меньшим энергиям будут выравниваться и в случае слабого взаимодействия с окружающей средой система будет находиться в статистическом равновесии. Именно это и следовало ожидать из принципов статистики. Любая среда с температурой T, приводящая к квадратичному функционалу влияния, будет обладать свойствами, описываемыми соотношением (12.129).
Для атома, рассматриваемого в качестве системы q и взаимодействующего с электромагнитным полем при температуре T как с некоторой средой, величина aR даётся выражением (12.128), проинтегрированным по всем собственным колебаниям поля с различными частотами . Его можно разделить на часть, соответствующую холодной среде, описываемую уравнением (12.123), и внешний шумовой потенциал
a
R
=
C^2
2
(+)
+
1
eh/kT– 1
C^2
2
[
(+)
+
(-)
]
.
(12.131)
Первый член вызывает переходы только к более низким уровням, называемым спонтанным излучением. Второй член с одинаковой лёгкостью вызывает переходы вверх и вниз, называемые индуцированным излучением, или индуцированным поглощением. Мы говорим, что этот переход вызывается внешним потенциалом или шумом, среднеквадратичная интенсивность которого при частоте меняется с температурой как 1/(eh/kT– 1). Таким способом Эйнштейн впервые рассмотрел законы излучения чёрного тела. Как мы теперь видим, любое окружение, дающее квадратичный потенциал влияния при температуре T (назовём его окружением с линейной реакцией), можно рассмотреть тем же путём. Многие исследователи распространили аргументы Эйнштейна на другие системы, например на шумовые флуктуации потенциала в вольтметре при температуре T. Первый член измеряет скорость, с которой энергия определённым способом отбирается от системы. Он измеряет величину диссипации, вызванной средой (например, электрическим сопротивлением металла или радиационным сопротивлением электромагнитного поля). Относительно тел при температуре T можно сказать, что они ведут себя так, как будто, кроме диссипации, имеется генерируемый средой шумовой сигнал, средний квадрат которого при любой частоте пропорционален диссипации при той же частоте и величине (eh/kT– 1)– 1. Это утверждение называется диссипатпивно-флуктуационной теоремой.
Этот вопрос мы рассматривать здесь не будем (см. [20—22]).
§10. Заключение
Из рассмотренных приложений интегралов по траекториям к теории вероятностей ясно, что если подынтегральные выражения имеют гауссову форму, то наш метод может оказаться весьма полезным. Однако при этом мы не выходим за круг задач, которые можно решить и другими методами без использования интегралов по траекториям. Возникает резонный вопрос о практической значимости интегралов по траекториям. На это можно сказать лишь, что если задача не является гауссовой, то с помощью интегралов по траекториям её по крайней мере можно сформулировать, исследовать и надеяться, что дальнейшее развитие этого метода позволит также и решить задачу. Единственный случай, когда с помощью интегралов по траекториям получается результат, который нельзя просто вывести обычными методами,— это вариационный принцип, обсуждавшийся в гл. 11. Можно думать, что при дальнейшем совершенствовании метода число таких результатов возрастёт.
Стоит также подчеркнуть, что этот метод допускает быстрый переход от одной формулировки задачи к другой и часто даёт ясное или легко выводимое указание на соотношение, которое затем со значительно большей затратой труда можно вывести обычными способами.
Что касается применений к квантовой механике, то методу интегралов по траекториям присущи, к сожалению, серьёзные недостатки. Таким методом нельзя просто рассматривать спиновые или другие подобные операторы. Наиболее плодотворным он оказывается в применении к системам, для описания которых вполне достаточно координат и канонически сопряжённых им импульсов. Тем не менее спин является неотъемлемой частью реальных квантовомеханических систем. И очень серьёзным ограничением является то, что полуцелый спин электрона не имеет простого и ясного представления в нашем методе. Спин электрона можно ввести, если амплитуды вероятности и все величины рассматривать как кватернионы, а не как обычные комплексные числа; однако возникающая при этом некоммутативность таких чисел — серьёзное осложнение.
Вместе с тем многие результаты и формулировки метода интегралов по траекториям можно выразить с помощью другого математического формализма, представляющего собой одну из форм исчисления упорядоченных операторов (см. [23]). В этой форме большинство результатов предыдущих глав находят аналогичное, но более общее представление, включающее некоммутирующие переменные (такое обобщение неизвестно лишь для специальных задач гл. 11). Например, обсуждение в данной главе функционалов влияния должно натолкнуть читателя на мысль, что важным и интересным обобщением была бы связь среды не с координатой q, а с некоммутирующим оператором, таким, как спин. Такие обобщения не могут быть просто выражены с помощью интегралов по траекториям, но легко формулируются на языке тесно связанного с ним операторного исчисления.
Стоит и дальше прилагать усилия, чтобы распространить метод интегралов по траекториям за его сегодняшние пределы. Несмотря на ограничения, ценность его весьма велика благодаря той помощи, Которую он оказывает интуиции исследователя в соединении физического понимания сути дела с математическим анализом.
Приложение
ЧАСТО ПРИМЕНЯЕМЫЕ ИНТЕГРАЛЫ
–
e
ax^2+bx
dx
=
– a
1/2
e
– b^2/4a
,
–
e
a(x1– x)^2
e
b(x2– x)^2
dx
=
–
a+b
1/2
exp
ab
a+b
(x
1
– x
2
)^2
,
0
exp
–
a
x^2
–
bx^2
dx
=
4b
1/2
exp
(-2
ab
)
,
T
0
exp
–
a
T-
–
b
d
(T-)^3
=
exp
[-(1/T)(a+b)^2]
bT/
,
T