Чтение онлайн

на главную

Жанры

Квантовая механика и интегралы по траекториям
Шрифт:

Понятие об интерференции амплитуд — основное во всей квантовой механике. В некоторых ситуациях могут присутствовать обе разновидности альтернатив. Предположим, что в эксперименте с двумя отверстиями нас интересует вероятность попадания электрона в некоторую точку, скажем, в пределах 1 см от центра экрана. Мы можем понимать под этим вероятность того, что сработавший детектор находился в пределах 1 см от точки x=0 (если детекторы были размещены по всему экрану и один из них наверняка сработал бы, когда электрон попал на экран). В этом случае существуют различные вероятности того, что электрон попадает в детектор через то или другое отверстие. Отверстия представляют собой интерферирующие альтернативы, а детекторы — несовместимые. Поэтому сначала

складываем 1+2 для фиксированного значения x, возводим эту сумму в квадрат, а затем полученные вероятности интегрируем по x от -1 до 1.

Обладая небольшим опытом, нетрудно сказать, какая именно разновидность альтернативы имеет место. Предположим, например, что мы располагаем информацией об альтернативах (или её можно было бы получить без изменения конечного результата), но эта информация не используется. Тем не менее суммирование вероятностей в этом случае нужно выполнять по правилу для несовместимых альтернатив. Благодаря имеющейся информации эти несовместимые альтернативы при необходимости могли бы быть идентифицированы по отдельности.

Фиг. 1.8. Рассеяние одного ядра на другом в системе центра масс.

При рассеянии двух тождественных ядер появляется чёткий интерференционный эффект. В этом случае налицо две интерферирующие альтернативы. Частица, которая попадает, например, в точку 1, могла вылететь либо из А, либо из В. Если бы исходные ядра не были идентичными, то проверка тождественности в точке 1 могла бы указать, какая альтернатива имеет место в действительности; тогда альтернативы были бы несовместимы и поэтому никаких интерференционных эффектов не возникло бы.

Некоторые иллюстрации. Альтернативы, которые невозможно различить никаким экспериментом, всегда интерферируют. Яркой иллюстрацией этого факта служит, например, рассеяние двух ядер на угол 90° в системе центра масс, которое изображено на фиг. 1.8. Пусть А является -частицей, а В — некоторым другим ядром. Спрашивается, какова вероятность того, что А попадает в точку 1 и В в точку 2. Пусть амплитудой такого процесса будет AB(1,2), тогда вероятность p=|AB(1,2)|^2. Допустим, что мы не различаем, какое ядро попадает в точку 1 (т.е. не знаем, будет ли это ядро А или В). Если это ядро В, то амплитудой такого события будет AB(2,1) [равная AB(1,2), так как мы выбрали угол рассеяния 90°]. Вероятность того, что одно ядро попадёт в точку 1, а другое в точку 2, равняется

|

AB

(1,2)|^2+

|

AB

(2,1)|^2=

2p.

(1.9)

Мы сложили вероятности. Случаи, когда и А, и В попадают в точку 1, представляют собой несовместимые альтернативы, так как при желании мы могли бы, не нарушая предыдущего процесса рассеяния, определить тип ядра, попавшего в точку 1.

Но что произойдёт, если не только А, но и В также будет -частицей? Никакой эксперимент в этом случае не в состоянии различить их, и если что-то попадает в точку 1, мы не сможем узнать, какая это частица. Здесь налицо интерферирующие альтернативы, и вероятность равна уже

|

AB

(1,2)+

AB

(2,1)|^2=4p.

(1.10)

Этот интересный результат проверен на опыте.

Когда происходит рассеяние электронов на электронах, то результат отличен от описанного в двух отношениях. Во-первых, у электрона есть свойство, которое мы называем спином, и каждый электрон может находиться в одном из двух состояний: его спиновый момент направлен «вверх» или «вниз». В случае рассеяния электронов малой энергии спиновое состояние в первом приближении не изменяется. Со спином связан магнитный момент электрона; при малых скоростях основными будут электрические силы, обусловленные зарядом, а влияние магнитных сил сводится лишь к малой поправке, которой мы пренебрегаем. Поэтому если спин электрона А направлен вверх, а спин электрона В — вниз, то, определив его направление, мы могли бы затем различить их в момент прихода в точку 1. Вероятность рассеяния в этом случае

|

AB

(1,2)|^2+

|

AB

(2,1)|^2=

2p.

(1.11)

Если же и электрон А, и электрон В начинают движение, когда их спины были направлены вверх, то мы не сможем их в дальнейшем различить и следует ожидать, что

|

AB

(1,2)+

AB

(2,1)|^2=4p.

(1.12)

В действительности этот вывод ошибочен, и, как это ни странно, электроны не подчинены такому правилу. Фаза амплитуды, описывающей перемену мест пары тождественных электронов, отличается от исходной на угол 180°. Следовательно, в случае когда оба спина направлены вверх, вероятность рассеяния равна

|

AB

(1,2)-

AB

(2,1)|.

(1.13)

В случае же рассеяния на угол 90° AB(1,2)=AB(2,1), так что выражение (1.13) обращается в нуль.

Фермионы и бозоны. Правило сдвига фазы на угол 180° в случае, когда альтернативы включают в себя обмен тождественными электронами, довольно необычно и его физическая природа понята ещё не до конца. Кроме электронов, ему подчинены и другие частицы. Такие частицы называют фермионами и говорят, что они подчиняются статистике Ферми (антисимметричной статистике). К фермионам относятся электроны, протоны, нейтроны, нейтрино и -мезоны, а также комбинации из нечётного числа этих частиц, как, например, атом азота, содержащий семь электронов, семь протонов и семь нейтронов. Правило сдвига фазы на угол 180° впервые сформулировал Паули, и оно составляет квантовомеханическую основу принципа исключения Паули, определяющего характерные черты периодической системы элементов.

Частицы, перестановка которых не изменяет фазу амплитуды, называют бозонами и говорят, что они подчинены статистике Бозе, или симметричной статистике. Примерами бозонов являются фотоны, -мезоны и системы, содержащие чётное число ферми-частиц, как, например, -частица, состоящая из двух протонов и двух нейтронов. Все частицы вещества являются либо бозонами, либо фермионами. Эти свойства симметрии могут приводить к глубоким и на первый взгляд таинственным. последствиям; например, жидкий гелий, состоящий из атомов с массовым числом 4 (т.е. из бозонов), при температуре порядка 1—2° К может течь без сопротивления по узким трубкам, в то время как жидкость, состоящая из атомов с массовым числом 3 (из фермионов), не обладает таким свойством.

Поделиться:
Популярные книги

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Отмороженный

Гарцевич Евгений Александрович
1. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный

Фиктивная жена

Шагаева Наталья
1. Братья Вертинские
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фиктивная жена

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Совок 11

Агарев Вадим
11. Совок
Фантастика:
попаданцы
7.50
рейтинг книги
Совок 11

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Иван Московский. Первые шаги

Ланцов Михаил Алексеевич
1. Иван Московский
Фантастика:
героическая фантастика
альтернативная история
5.67
рейтинг книги
Иван Московский. Первые шаги

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

"Фантастика 2024-104". Компиляция. Книги 1-24

Михайлов Дем Алексеевич
Фантастика 2024. Компиляция
Фантастика:
боевая фантастика
5.00
рейтинг книги
Фантастика 2024-104. Компиляция. Книги 1-24

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф