Чтение онлайн

на главную

Жанры

Математические головоломки и развлечения

Гарднер Мартин

Шрифт:

«Гранями» четырехмерного гиперкуба служат обычные трехмерные кубы. Если «гиперкубировать» гиперкуб, то есть рассечь его на неповторяющиеся меньшие гиперкубы той же размерности, то его грани должны стать «кубированными» кубами. Поскольку, как мы только что видели, куб нельзя разрезать на неповторяющиеся меньшие кубики, «гиперкубирование» четырехмерного куба невозможно. Отсюда следует, что пятимерный куб также нельзя разбить на меньшие пятимерные кубы различных размеров.

Продолжая по индукции, мы приходим к заключению, что аналогичный вывод остается в силе для гиперкубов любой размерности, большей двух.

Примером совершенного квадрируемого прямоугольника бесконечного порядка может служить прямоугольник, изображенный на рис. 128. [55]

Глава 33. МЕХАНИЧЕСКИЕ ГОЛОВОЛОМКИ

В отличие от занимательных задач, обычно решаемых с помощью карандаша и листка бумаги,

механические головоломки требуют кое-какого специального «оборудования», реквизита и ловких рук.

Этим «оборудованием» могут быть и самые обыкновенные кусочки картона, и замысловатые конструкции из дерева и металла, повторить которые по плечу далеко не каждому мастеру. Среди тех механических головоломок, которые иногда продаются в магазине игрушек, встречаются чрезвычайно интересные с математической точки зрения. По этой причине некоторые любители математических развлечений их коллекционируют. Самая большая из известных мне коллекций собрана Лестером А. Граймзом, инженером по технике противопожарной безопасности из Нью-Рошелла, штат Нью-Йорк.

55

На русском языке имеются две книги о разрезании квадратов: Яглом И. М. Как разрезать квадрат? — М.: Наука, 1968 и Кордемский Б. А., Русалев Н. В. Удивительный квадрат. — М.: Гостехтеоретиздат, 1952.

(Несколько менее обширная коллекция, в которой, однако, более полно представлены старинные игрушки XIX века и китайские головоломки, принадлежит Томасу Рэнсому из Белвилла, пров. Онтарио, Канада.) Коллекция Граймза насчитывает около 2000 разнообразнейших головоломок; среди них встречаются и подлинные шедевры и редкости. О головоломках из этой коллекции и пойдет в основном речь в этой главе.

История головоломок еще не написана. Тем не менее вряд ли можно сомневаться в том, что древнейшей из них является старинная китайская игра танграм, известная в Китае под названием чи-чао-тю (что означает «хитроумный узор из семи частей»). В течение вот уже нескольких тысячелетий эта игра служит любимым развлечением в странах Востока, а с начала XIX века она получила распространение и на Западе. Рассказывают, что Наполеон, находясь в изгнании на острове Св. Елены, часами занимался составлением картинок из элементов танграма. Название «танграм» (неизвестное в Китае), по-видимому, было придумано в середине ХIХ века каким-то английским или американским «игрушечных дел» мастером, чье имя, к сожалению, до нас не дошло.

Фигуркам, которые можно составить из семи элементов танграма, посвящено множество альбомов и книг. [56] Среди них следует упомянуть и небольшую книжку знаменитого американского составителя головоломок Сэма Лойда, высоко ценимую знатоками.

Время от времени появлялись и другие головоломки, похожие на танграм (так, древние греки и римляне развлекались тем, что складывали фигурки из «обломков» разрезанного на 14 частей прямоугольника; изобретение этой игры приписывают Архимеду), но пережить танграм не суждено было ни одной из них. Чтобы понять причину удивительного долголетия этой старинной китайской игры, достаточно определенным образом разрезать квадрат из плотного картона и испытать свое искусство в складывании уже известных и придумывании новых фигурок. Схема разрезания квадрата показана на рис. 173.

56

Много задач такого рода собрано в книге Я. И. Перельмана «Фигурки-головоломки из 7 кусочков» (Л. — М.: Радуга, 1927). См. также книгу Б. А. Кордемского и Н. В. Русалева, о которой говорится в предыдущем примечании.

Рис. 173 Китайский тантрам (сверху слева) и некоторые из фигурок, которые можно составить из семи его элементов — «танов».

Ту часть квадрата, которая имеет форму параллелограмма, следует окрасить в черный цвет с двух сторон, чтобы при желании ее можно было переворачивать на другую сторону. В каждой фигуре должны быть использованы все семь элементов танграма. Трудности, как правило, возникают лишь при составлении геометрических фигур. О том, какие изящные силуэты можно выложить из семи элементов танграма, вы можете судить по рис. 173.

Простые головоломки, связанные с разрезанием фигур, иногда могут приводить к весьма нетривиальным математическим задачам. Предположим, например, что вы хотите найти все (различные) выпуклые многоугольники (многоугольник называется выпуклым, если все его внешние углы больше или равны 180°), которые можно составить из семи «танов». После длительного пользования методом проб и ошибок вам удастся найти некоторые из них, но как доказать, что вы нашли все выпуклые многоугольники? Два китайских математика, Фу Трен-ван и Чуань Чи-сюнь, в 1942 году опубликовали статью, в которой рассмотрели эту задачу. Их подход к решению был весьма остроумен. Каждую из пяти больших частей танграма (два больших треугольника, один треугольник поменьше, квадрат и параллелограмм) можно разбить на равнобедренные прямоугольные треугольники, конгруэнтные двум самым маленьким треугольникам танграма. Всего при этом получится 16 совершенно одинаковых равнобедренных прямоугольных треугольников. С помощью тонких рассуждений авторы показали, что из этих 16 треугольников можно построить 20 различных выпуклых многоугольников (многоугольники, переходящие друг в друга при поворотах и отражениях, различными не считаются). Отсюда уже нетрудно доказать, что лишь 13 из найденных 20 выпуклых многоугольников можно построить из деталей танграма.

Среди 13 допустимых многоугольников имеется: один треугольник, шесть четырехугольников, два пятиугольника и четыре шестиугольника. Треугольник и три четырехугольника показаны на рис. 173. Приятной, но отнюдь не легкой задачей может служить отыскание девяти остальных выпуклых многоугольников. Каждый из них можно построить несколькими способами, но один из шестиугольников по трудности превосходит все 12 остальных фигур.

Другая широко распространенная разновидность головоломок, различные варианты которой встречались много веков назад, — игры с шашками или какими-нибудь заменяющими их предметами, которые для достижения того или иного результата необходимо передвигать по доске в соответствии с принятыми правилами.

Одна из лучших головоломок этого типа, широко распространенная в Англии времен королевы Виктории, показана на рис. 174.

Рис. 174 Как поменять черные и белые фишки за наименьшее число ходов?

Цель игры заключается в том, чтобы за наименьшее число ходов поменять местами черные и белые фишки. Ходом считается либо перемещение фишки из одного квадрата в соседний пустой квадрат, либо перепрыгивание через соседнюю фишку в пустой квадрат. Перепрыгивать можно через фишки как своего, так и другого цвета.

Все фишки ходят, «как шахматная ладья», ходить по диагонали запрещается. В большинстве сборников головоломок приводится решение этой задачи в 52 хода, но известнейший английский специалист по головоломкам Генри Дьюдени нашел изящное решение в 46 ходов. Играть в эту игру можно маленькими фишками, помещая их прямо на рис. 174. Все квадраты пронумерованы, чтобы читателю легче было записывать ходы.

И танграм и головоломка с перестановкой фишек в некотором смысле являются приятными исключениями: их нетрудно построить самому. Большинство же головоломок в коллекции Граймза настолько сложны по своему устройству, что выполнить их возьмется далеко не каждый мастер. Полностью оценить их можно лишь тогда, когда у вас есть возможность подержать и повертеть их в своих руках, поэтому я ограничусь лишь кратким описанием этой разновидности головоломок. Сюда входят: шкатулки, кошельки, портсигары и всякого рода коробочки с потайными замками, которые вы должны найти и открыть; сотни головоломок из причудливо изогнутых проволочек, которые нужно расцепить; серебряные браслеты и кольца, составленные из отдельных хитроумно сцепленных между собой деталей; различные предметы, опутанные веревочками, которые нужно умудриться снять, не разрезая и не развязывая этих веревочек; игры, в которых вы должны проявить всю вашу ловкость и, встряхивая или осторожно поворачивая коробочку, закрытую сверху стеклом, загнать шарики или какие-нибудь другие мелкие предметы в то или иное положение; кольца, которые нужно снять с продетых в них стержней; головоломки типа колумбова яйца; китайский головоломки, составленные из сцепленных между собой кусочков дерева самой замысловатой формы; игры с перекладыванием фигур и перестановкой фишек и сотни любопытнейших головоломок, не поддающихся никакой классификации. Кто изобретает такие игрушки? Проследить их происхождение до самых истоков — задача непосильная: во многих случаях нам неизвестно даже, в какой стране изобретена та или иная головоломка.

Однако и здесь имеется одно счастливое исключение. Особый раздел в коллекции Граймза занимают около 200 замечательных головоломок, изобретенных и сконструированных Л. Д. Уитткером, ветеринаром из Фармвиля, штат Виргиния. Все они искусно вырезаны из драгоценных пород дерева. (Уитткер вытачивал их в мастерской, устроенной в подвале его дома), многие из них очень сложны и дьявольски остроумны. Как правило, головоломка имеет вид коробочки с отверстием в крышке. Бросив туда стальной шарик, вы должны выкатить его через другое отверстие в боковой стенке. Над коробочкой разрешается производить любые манипуляции, не ломая и не открывая ее. Разумеется, одними лишь постукиваниями по коробочке мы не сможем заставить шарик прокатиться по всем внутренним ходам и выйти наружу. Некоторые препятствия на своем пути он сможет преодолеть лишь в том случае, если мы догадаемся определенным образом встряхнуть коробочку.

Поделиться:
Популярные книги

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Авиатор: назад в СССР 11

Дорин Михаил
11. Покоряя небо
Фантастика:
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 11

LIVE-RPG. Эволюция-1

Кронос Александр
1. Эволюция. Live-RPG
Фантастика:
социально-философская фантастика
героическая фантастика
киберпанк
7.06
рейтинг книги
LIVE-RPG. Эволюция-1

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

70 Рублей

Кожевников Павел
1. 70 Рублей
Фантастика:
фэнтези
боевая фантастика
попаданцы
постапокалипсис
6.00
рейтинг книги
70 Рублей

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Наизнанку

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Наизнанку

Третий. Том 3

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 3

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Пятое правило дворянина

Герда Александр
5. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пятое правило дворянина

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Виконт. Книга 2. Обретение силы

Юллем Евгений
2. Псевдоним `Испанец`
Фантастика:
боевая фантастика
попаданцы
рпг
7.10
рейтинг книги
Виконт. Книга 2. Обретение силы

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия